摘要:
An exemplary embodiment provides for a servo-controlled, head actuator design that has low profile characteristics in both the height and width dimensions. The low height allows the actuator to fit into a half-high tape drive form factor. The construction of the actuator, in one embodiment, reduces the width of the tape drive system, and allows the industry standard mounting with the necessary screw length. Additionally, in some implementations, the actuator comprises a smaller, concentrated moving mass coupled with a flexure construction having a narrowed width with added ribs for torsional stiffness. These aspects of the actuator provide a higher second mode of vibration compared to the flexure designs of the prior art. The actuator design includes a coarse actuator assembly for larger movements of the head, and a fine grain actuator, including a voice coil motor, responsive to analysis of servo signals. In some embodiments, the voice coil motor of the fine actuator and the coarse actuator shafts are in line. Since the centerlines of the shafts are in-line with the voice coil motor, the resonance response of the shaft spring-mass system is reduced.
摘要:
A servo-controlled, head actuator design that has low profile characteristics in both the height and width dimensions. The low height allows the actuator to fit into a half-high tape drive form factor. Additionally, in some implementations, the actuator comprises a smaller, concentrated moving mass coupled with a flexure construction having a narrowed width with added ribs for torsional stiffness. These aspects of the actuator provide a higher second mode of vibration compared to the flexure designs of the prior art. The actuator includes a coarse actuator assembly for larger movements of the head, and a fine actuator, including a Voice coil motor, responsive to analysis of servo signals. In some embodiments, the voice coil motor of the fine actuator and the coarse actuator shafts are in line. Since the centerlines of the shafts are in-line with the voice coil motor, the resonance response of the shaft spring-mass system is reduced.
摘要:
In a method of electronically measuring reel off-center run-out and reel hub mismatch, tape speed data related to a tape coupled with an operating drive reel is electronically measured. The tape speed data is correlated with drive reel rotation angles. The correlated tape speed data is translated to drive reel hub radii variations with respect to the drive reel rotation angles. The drive reel hub radii variations comprise an operational measure of reel off-center run-out and reel hub mismatch of the drive reel.
摘要:
A head rotator assembly (22) for positioning a head (20) of a tape drive (10) relative to a storage tape includes a head supporter (230) and a supporter mover assembly (232). The head supporter (230) is coupled to and supports the head (20). The supporter mover assembly (232) rotates a portion of the head supporter (230) about an axis (241) to move the head (20) in an azimuth direction relative to the storage tape as the storage tape moves over the head (20). The head rotator assembly (22) includes a controller (16) that controls movement of the supporter mover assembly (232) based on a positioning signal. The supporter mover assembly (232) can include a first actuator (234A) that moves a first lever (236A) to rotate the head supporter (230) to move the head (20) in the azimuth direction. The first actuator (234A) biases the first lever (236A) to rotate part of the head supporter (230) to move the head in the azimuth direction.
摘要:
A head rotator assembly (22) for positioning a head (20) of a tape drive (10) relative to a storage tape includes a head supporter (230) and a supporter mover assembly (232). The head supporter (230) is coupled to and supports the head (20). The supporter mover assembly (232) rotates a portion of the head supporter (230) about an axis (241) to move the head (20) in an azimuth direction relative to the storage tape as the storage tape moves over the head (20). The head rotator assembly (22) includes a controller (16) that controls movement of the supporter mover assembly (232) based on a positioning signal. The supporter mover assembly (232) can include a first actuator (234A) that moves a first lever (236A) to rotate the head supporter (230) to move the head (20) in the azimuth direction. The first actuator (234A) biases the first lever (236A) to rotate part of the head supporter (230) to move the head in the azimuth direction.
摘要:
In a method of electronically measuring reel off-center run-out and reel hub mismatch, tape speed data related to a tape coupled with an operating drive reel is electronically measured. The tape speed data is correlated with drive reel rotation angles. The correlated tape speed data is translated to drive reel hub radii variations with respect to the drive reel rotation angles. The drive reel hub radii variations comprise an operational measure of reel off-center run-out and reel hub mismatch of the drive reel.
摘要:
Disclosed is a method of increasing the transfer rate of a magnetic tape drive by employing at least one head gap per rail. A flexible printed circuit provides communication between main control circuitry of the tape drive and the head positioning apparatus. The flex circuit provides flexible control loops that correspond to the translation range of the head positioning apparatus. In a preferred embodiment, the flex circuit includes a fine positioner loop and a coarse positioner loop.
摘要:
A voice coil driven positioner is provided for positioning the magnetic head of a tape drive relative to the tape of a removable tape cartridge. The head positioner includes a low-mass carriage that supports the head on one end and the voice coil on an opposed second end. A low friction guide mechanism guides the carriage along a precision movement path that carries the head across tracks of a supplied multi-track tape and simultaneously carries the voice coil through a flux field generated by a stator. A movable magnet is attached to the carriage and located within the hollow of the voice coil for reciprocating into a hollow passageway of the stator together with reciprocation of the voice coil into another hollow of the stator. A flux detector is attached to the stator and located compactly within the hollow passageway of the stator for detecting the position of the magnet. A programmable lookup table converts measurement signals output by the flux detector into pre-calibrated, head-position indicating signals. A platform is provided on the carriage for mounting an interferometer prism used during calibration.
摘要:
A voice coil driven positioner is provided for positioning the magnetic head of a tape drive relative to the tape of a removable tape cartridge. The head positioner includes a low-mass carriage that supports the head on one end and the voice coil on an opposed second end. A low friction guide mechanism guides the carriage along a precision movement path that carries the head across tracks of a supplied multi-track tape and simultaneously carries the voice coil through a flux field generated by a stator. A movable portion of a position detector is attached to the carriage and located within the hollow of the voice coil for reciprocating into a hollow passageway of the stator together with reciprocation of the voice coil into another hollow of the stator. A fixed portion of the position detector is attached to the stator and located compactly within the hollow passageway of the stator. A programmable lookup table converts measurement signals output by the position detector into pre-calibrated, head-position indicating signals. A platform is provided on the carriage for mounting an interferometer prism used during calibration.