摘要:
The transmission liquid crystal display device includes a liquid crystal panel and a backlight, wherein the liquid crystal panel has pixels each of which is divided into four sub pixels as red (R), green (G), blue (B), and white (W) sub pixels. Further, an emission luminance of the backlight can be controlled.
摘要:
The transmission liquid crystal display device includes a liquid crystal panel and a backlight, wherein the liquid crystal panel has pixels each of which is divided into four sub pixels as red (R), green (G), blue (B), and white (W) sub pixels. Further, an emission luminance of the backlight can be controlled.
摘要:
Each of image data sorted so as to correspond to divided areas respectively is stored in an in-area image memory. A maximum luminance extracting section extracts the maximum luminance value therefrom and records it onto the maximum luminance storage section. In accordance with the maximum luminance value that is thus stored in the maximum luminance storage section and that each of the areas has, a BL candidate value calculating section and a BL luminance difference adjusting section determine an emitted-light luminance in a target area such that a difference between the backlight luminance in the target area and the backlight luminance in its adjacent area is not more than a tolerance value.
摘要:
Each of image data sorted so as to correspond to divided areas respectively is stored in an in-area image memory. A maximum luminance extracting section extracts the maximum luminance value therefrom and records it onto the maximum luminance storage section. In accordance with the maximum luminance value that is thus stored in the maximum luminance storage section and that each of the areas has, a BL candidate value calculating section and a BL luminance difference adjusting section determine an emitted-light luminance in a target area such that a difference between the backlight luminance in the target area and the backlight luminance in its adjacent area is not more than a tolerance value.
摘要:
In a transmissive liquid crystal display device including a liquid crystal panel and a backlight, the liquid crystal panel has pixels each divided into four subpixels, namely red (R), green (G), blue (B), and white (W) subpixels. Further, the backlight is a white backlight whose light emission luminance is controllable. Furthermore, a color-saturation conversion section performs a color-saturation reduction process on a first input RGB input signal serving as an original input signal, and then a gamma-correction section performs a gamma-correction process on the first RGB input signal. An output signal generation section calculates transmittances and a backlight value in accordance with gamma-corrected RGB input signal obtained after the gamma-correction process has been performed by the gamma-correction section.
摘要:
In a transmissive-type liquid crystal display device including a liquid crystal panel and a backlight, the liquid crystal panel has pixels each divided into four subpixels red (R), green (G), blue (B), and white (W). The backlight is a white backlight by which luminance of emitted light is controllable. A color-saturation reducing section carries out a process of reducing color saturation on a first RGB input signal, which is an original input signal, so that the first RGB input signal becomes a second RGB input signal. Thereafter, an output signal generating section obtains a transmissivity and a backlight value on the basis of the second RGB input signal.
摘要:
In a transmissive-type liquid crystal display device including a liquid crystal panel and a backlight, the liquid crystal panel has pixels each divided into four subpixels red (R), green (G), blue (B), and white (W). The backlight is a white backlight by which luminance of emitted light is controllable. A color-saturation reducing section carries out a process of reducing color saturation on a first RGB input signal, which is an original input signal, so that the first RGB input signal becomes a second RGB input signal. Thereafter, an output signal generating section obtains a transmissivity and a backlight value on the basis of the second RGB input signal.
摘要:
In a transmissive liquid crystal display device including a liquid crystal panel and a backlight, the liquid crystal panel has pixels each divided into four subpixels, namely red (R), green (G), blue (B), and white (W) subpixels. Further, the backlight is a white backlight whose light emission luminance is controllable. Furthermore, a color-saturation conversion section performs a color-saturation reduction process on a first input RGB input signal serving as an original input signal, and then a gamma-correction section performs a gamma-correction process on the first RGB input signal. An output signal generation section calculates transmittances and a backlight value in accordance with gamma-corrected RGB input signal obtained after the gamma-correction process has been performed by the gamma-correction section.
摘要:
In a transmissive liquid crystal display device including a liquid crystal panel and a backlight, the liquid crystal panel contains pixels each divided into four subpixels, a red (R), a green (G), a blue (B), and a white (W) subpixel. The backlight is a white backlight emitting light with controllable emission luminance. A luminance lowering section performs luminance lowering processing on input RGB signals (original input signals) for transformation into luminance-lowered RGB signals. An output signal generating section obtains transmittances and a backlight value from the luminance-lowered RGB signals.
摘要:
In a transmissive liquid crystal display device including a liquid crystal panel and a backlight, the liquid crystal panel contains pixels each divided into four subpixels, a red (R), a green (G), a blue (B), and a white (W) subpixel. The backlight is a white backlight emitting light with controllable emission luminance. A luminance lowering section performs luminance lowering processing on input RGB signals (original input signals) for transformation into luminance-lowered RGB signals. An output signal generating section obtains transmittances and a backlight value from the luminance-lowered RGB signals.