Abstract:
A belt retractor (40) having a belt reel (14), a seat belt (12) which can be wound thereon to form a belt reel, and at least one first assembly, the first assembly being arranged coaxially with the axis of rotation of the belt reel (14) and in series with the belt reel (14). The belt retractor is especially adapted for mounting inside the frame member of a motor vehicle seat.
Abstract:
A seat belt retractor includes a belt shaft pivot-mounted in a retractor frame, wherein the belt shaft shows an at least two-part design with a first and a second part. A load limiting device includes at least two parts, which can be moved relative to each other and have teeth, with which they alternately engage and disengage. Each of the parts of the load limiting device is allocated to a different part of the belt shaft. A tensioning device is located on the second part of the belt shaft and, upon activation, abruptly drives the belt shaft in the winding direction. One of the parts of the load limiting device, via a transmission device, is connected in a rotationally-fixed manner to the second part of the belt shaft through the first part, which is a hollow shaft.
Abstract:
A seat-belt retractor having a seat-belt spool and a drive device, both the seat-belt spool and the drive device being modular sub-assemblies and designed as a seat-belt spool module and a drive device module, and said seat-belt spool module and drive device module being interconnectable in different orientations relative to one another via a structural interface.
Abstract:
A control method for an electric seatbelt retractor and an electric seatbelt retractor including a spindle (2) and a seatbelt (3) wound thereon, and an electric motor (4) driving the spindle (2) via a rotor (3) in pull-in or in pull-out direction when activated, and a sensor device (10) detecting the movement of the spindle (2), wherein a spring (11) is provided, which is arranged between the spindle (2) and the rotor (3) enabling a relative movement of the spindle (2) to the rotor (3) or to a retractor-fixed part, wherein the electric motor (4) is controlled by a signal of the sensor device (10) generated by the relative movement of the spindle (2) to the rotor (3) or a retractor-fixed part with torsional tensioning or expanding the spring (11).
Abstract:
A belt retractor including a self-orienting vehicle-acceleration-sensitive sensor device (18) including a belt shaft, and a first blocking device blocking the belt shaft in the belt extraction direction, which is controllable by the sensor device (18). The sensor device (18) includes a sensor housing (1) pivotable about a pivot axis (S), which is fixable with respect to the frame using a second blocking device (17). A contact surface (5) for an inertial mass is provided in the sensor housing (1). The contact surface (5) is shaped such that in the case of an oriented sensor housing (1) starting from the center of the contact surface (5), the line of intersection between the contact surface (5) and a first central plane (E1) extending through the center of the contact surface (5) perpendicular to the pivot axis (S) has a flatter angle (W) with respect to the horizontal plane (H) than the line of intersection between the contact surface (5) and a second central plane (E2) extending through the center of the contact surface (5) perpendicular to the first central plane (E1).
Abstract:
A control method for an electric seatbelt retractor and an electric seatbelt retractor including a spindle (2) and a seatbelt (3) wound thereon, and an electric motor (4) driving the spindle (2) via a rotor (3) in pull-in or in pull-out direction when activated, and a sensor device (10) detecting the movement of the spindle (2), wherein a spring (11) is provided, which is arranged between the spindle (2) and the rotor (3) enabling a relative movement of the spindle (2) to the rotor (3) or to a retractor-fixed part, wherein the electric motor (4) is controlled by a signal of the sensor device (10) generated by the relative movement of the spindle (2) to the rotor (3) or a retractor-fixed part with torsional tensioning or expanding the spring (11).
Abstract:
A belt retractor including a self-orienting vehicle-acceleration-sensitive sensor device (18) including a belt shaft, and a first blocking device blocking the belt shaft in the belt extraction direction, which is controllable by the sensor device (18). The sensor device (18) includes a sensor housing (1) pivotable about a pivot axis (S), which is fixable with respect to the frame using a second blocking device (17). A contact surface (5) for an inertial mass is provided in the sensor housing (1). The contact surface (5) is shaped such that in the case of an oriented sensor housing (1) starting from the center of the contact surface (5), the line of intersection between the contact surface (5) and a first central plane (E1) extending through the center of the contact surface (5) perpendicular to the pivot axis (S) has a flatter angle (W) with respect to the horizontal plane (H) than the line of intersection between the contact surface (5) and a second central plane (E2) extending through the center of the contact surface (5) perpendicular to the first central plane (E1).
Abstract:
A seat belt retractor includes a belt shaft pivot-mounted in a retractor frame, wherein the belt shaft shows an at least two-part design with a first and a second part. A load limiting device includes at least two parts, which can be moved relative to each other and have teeth, with which they alternately engage and disengage. Each of the parts of the load limiting device is allocated to a different part of the belt shaft. A tensioning device is located on the second part of the belt shaft and, upon activation, abruptly drives the belt shaft in the winding direction. One of the parts of the load limiting device, via a transmission device, is connected in a rotationally-fixed manner to the second part of the belt shaft through the first part, which is a hollow shaft.