Abstract:
An exemplary system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
Abstract:
An exemplary system comprises a linearizer module, a first upconverter module, a power amplifier module, a signal sampler module, and a downconverter module. The linearizer module may be configured to receive a first intermediate frequency signal and to adjust the first intermediate frequency signal based on a reference signal and a signal based on a second intermediate frequency signal. The first upconverter module may be configured to receive and up-convert a signal based on the adjusted first intermediate frequency signal to a radio frequency signal. The power amplifier module may be configured to receive and amplify a power of a signal based on the radio frequency signal. The signal sampler module may be configured to sample a signal based on the amplified radio frequency signal. The downconverter module may be configured to receive and down-convert a signal based on the sampled radio frequency signal to the second intermediate frequency signal.
Abstract:
Various embodiments provide for systems and methods for increased linear output power of a transmitter. An exemplary wireless communications system for transmitting an input signal comprises a predistorter module, a GaN power amplifier, a coupler, and an antenna. The predistorter module is configured to detect existing distortion by comparing the input signal to a feedback signal and generate a correction signal. The predistorter may adaptively adjust its operation to minimize the existing distortion due to GaN power amplifier nonlinear characteristics. The result is that the GaN power amplifier may send a power signal of improved linearity to the antenna. The coupler is configured to sample the amplified signal from the GaN power amplifier to generate the feedback signal. The antenna is configured to transmit the amplified signal.