摘要:
Embodiments disclosed herein address the need in the art for reduced overhead control with the ability to adjust transmission rates as necessary. In one aspect, a first signal indicates an acknowledgement of a decoded subpacket and whether or not a rate control command is generated, and a second signal conditionally indicates the rate control command when one is generated. In another aspect, a grant may be generated concurrently with the acknowledgement. In yet another aspect, a mobile station monitors the first signal, conditionally monitors the second signal as indicated by the first signal, and may monitor a third signal comprising a grant. In yet another aspect, one or more base stations transmit one or more of the various signals. Various other aspects are also presented. These aspects have the benefit of providing the flexibility of grant-based control while utilizing lower overhead when rate control commands are used, thus increasing system utilization, increasing capacity and throughput.
摘要:
A channel structure and mechanisms that support effective and efficient allocation and utilization of the reverse link resources. In one aspect, mechanisms are provided to quickly assign resources (e.g., a supplemental channel) as needed, and to quickly de-assign the resources when not needed or to maintain system stability. The reverse link resources may be quickly assigned and de-assigned via short messages exchanged on control channels on the forward and reverse links. In another aspect, mechanisms are provided to facilitate efficient and reliable data transmission. A reliable acknowledgment/negative acknowledgment scheme and an efficient retransmission scheme are provided. Mechanisms are also provided to control the transmit power and/or data rate of the remote terminals to achieve high performance and avoid instability.
摘要:
A channel structure and mechanisms that support effective and efficient allocation and utilization of the reverse link resources. In one aspect, mechanisms are provided to quickly assign resources (e.g., a supplemental channel) as needed, and to quickly de-assign the resources when not needed or to maintain system stability. The reverse link resources may be quickly assigned and de-assigned via short messages exchanged on control channels on the forward and reverse links. In another aspect, mechanisms are provided to facilitate efficient and reliable data transmission. A reliable acknowledgment/negative acknowledgment scheme and an efficient retransmission scheme are provided. Mechanisms are also provided to control the transmit power and/or data rate of the remote terminals to achieve high performance and avoid instability.
摘要:
Embodiments disclosed herein address the need in the art for reduced overhead control with the ability to adjust transmission rates as necessary. In one aspect, a first signal indicates an acknowledgement of a decoded subpacket and whether or not a rate control command is generated, and a second signal conditionally indicates the rate control command when one is generated. In another aspect, a grant may be generated concurrently with the acknowledgement. In yet another aspect, a mobile station monitors the first signal, conditionally monitors the second signal as indicated by the first signal, and may monitor a third signal comprising a grant. In yet another aspect, one or more base stations transmit one or more of the various signals. Various other aspects are also presented. These aspects have the benefit of providing the flexibility of grant-based control while utilizing lower overhead when rate control commands are used, thus increasing system utilization, increasing capacity and throughput.
摘要:
An apparatus, system, and method efficiently manage reverse link communication in a communication system having geographically distributed base stations. Coupled load information is exchanged between base stations allowing a base station to determine an appropriate allocation of reverse link channel resources to mobile stations served by the base station. Since the allocation of reverse link channels resources are controlled directly by the base station, delays due to communications with a central controller are eliminated. As a result, adverse effects of load scheduling based on obsolete reverse channel information are minimized.
摘要:
An apparatus, system, and method efficiently manage reverse link communication in a communication system having geographically distributed base stations. A base station functioning to at least one mobile station as a non-serving active base station estimates an expected coupled load due to the at least one mobile based on a previous total coupled load. The base station determines a total available capacity based on the difference between the total capacity of the base station and the estimated expected coupled load. The base station allocates reverse link resources to other mobile stations served by the base station so as not to exceed the total available capacity. Since the allocation of reverse link channels resources are controlled directly by the base station, delays due to communications with a central controller are eliminated. As a result, adverse effects of load scheduling based on obsolete reverse channel information are minimized.
摘要:
An apparatus, system, and method efficiently manage reverse link communication in a communication system having geographically distributed base stations. A base station functioning to at least one mobile station as a non-serving active base station estimates an expected coupled load due to the at least one mobile based on a previous total coupled load. The base station determines a total available capacity based on the difference between the total capacity of the base station and the estimated expected coupled load. The base station allocates reverse link resources to other mobile stations served by the base station so as not to exceed the total available capacity. Since the allocation of reverse link channels resources are controlled directly by the base station, delays due to communications with a central controller are eliminated. As a result, adverse effects of load scheduling based on obsolete reverse channel information are minimized.
摘要:
Techniques for efficient signaling to and from a plurality of mobile stations are disclosed. In one embodiment, a subset of mobile stations may be allocated a portion of the shared resource with one or more individual access grants, another subset may be allocated a portion of the shared resource with a single common grant, and yet another subset may be allowed to use a portion of the shared resource without any grant. In another embodiment, an acknowledge and continue command is used to extend all or a subset of the previous grants without the need for additional requests and grants, and their associated overhead. In one embodiment, a traffic to pilot ratio (T/P) is used to allocate a portion of the shared resource, allowing a mobile station flexibility in selecting its transmission format based on T/P.
摘要:
A channel structure and mechanisms that support effective and efficient allocation and utilization of the reverse link resources. In one aspect, mechanisms are provided to quickly assign resources (e.g., a supplemental channel) as needed, and to quickly de-assign the resources when not needed or to maintain system stability. The reverse link resources may be quickly assigned and de-assigned via short messages exchanged on control channels on the forward and reverse links. In another aspect, mechanisms are provided to facilitate efficient and reliable data transmission. A reliable acknowledgment/negative acknowledgment scheme and an efficient retransmission scheme are provided. Mechanisms are also provided to control the transmit power and/or data rate of the remote terminals to achieve high performance and avoid instability.
摘要:
Techniques for efficient signaling to and from a plurality of mobile stations are disclosed. In one embodiment, a subset of mobile stations may be allocated a portion of the shared resource with one or more individual access grants, another subset may be allocated a portion of the shared resource with a single common grant, and yet another subset may be allowed to use a portion of the shared resource without any grant. In another embodiment, an acknowledge and continue command is used to extend all or a subset of the previous grants without the need for additional requests and grants, and their associated overhead. In one embodiment, a traffic to pilot ratio (T/P) is used to allocate a portion of the shared resource, allowing a mobile station flexibility in selecting its transmission format based on T/P.