摘要:
The present invention relates to a method for the preparation of tertiary carbinamine compounds from diastereoselective allylation and crotylation of N-unsubstituted imines derived from ketones.
摘要:
The present invention relates to a method for the preparation of tertiary carbinamine compounds from diastereoselective allylation and crotylation of N-unsubstituted imines derived from ketones.
摘要:
The present application relates to novel methods for the preparation of primary, secondary and tertiary carbinamine compounds, particularly the preparation of compounds of formulae I, IV and VI, from a carbonyl compound of formula II in the presence of ammonia or an ammonium equivalent of the formula NH4+X−, by way of allylation, crotylation, arylation, reductive amination and catalytic hydrogenation.
摘要:
The present application relates to novel methods for the preparation of secondary carbinamine compounds, particularly the preparation of secondary carbinamine compounds of the formula Ia, formula Ib or formula IV from aldehydes of the formula II and boronic acids of the formula III or formula V, in the presence of ammonia or an ammonia equivalent of the formula NH4+X−.
摘要:
The present application relates to novel methods for the preparation of secondary carbinamine compounds, particularly the preparation of secondary carbinamine compounds of the formula Ia, formula Ib or formula IV from aldehydes of the formula II and boronic acids of the formula III or formula V, in the presence of ammonia or an ammonia equivalent of the formula NH4+X−.
摘要:
The present application relates to novel methods for the preparation of primary, secondary and tertiary carbinamine compounds, particularly the preparation of compounds of formulae I, IV and VI, from a carbonyl compound of formula II in the presence of ammonia or an ammonium equivalent of the formula NH4+X−, by way of allylation, crotylation, arylation, reductive amination and catalytic hydrogenation.
摘要:
The current application relates to a metal catalyst of formula (I): M[ADC][X]n, wherein M is a metal, ADC is a chiral acyclic diaminocarbene ligand, and X is a neutral or anionic ligand. The ADC ligand is prepared from the corresponding chiral formamidium salt precursor. The metal catalyst is used for asymmetric organic synthesis reactions such as hydrosilations, hydrogenations, conjugate additions, and cross-couplings.
摘要:
Methods of performing cycloadditions are described that include (a) combining a first reactant and a second reactant in a hydrogen bonding solvent to form a reaction mixture; and (b) reacting the first reactant and the second reactant to form a cycloadduct. Methods of performing asymmetric catalytic reactions are also described that include (a) combining a first reactant, a second reactant, and a catalytic amount of a chiral hydrogen-bond donor in a solvent to form a reaction mixture; and (b) reacting the first reactant and the second reactant to form an enantiomeric excess of a reaction product. Reaction mixtures corresponding to these methods are also described.
摘要:
The current application relates to a metal catalyst of formula (I): M[ADC][X]n, wherein M is a metal, ADC is a chiral acyclic diaminocarbene ligand, and X is a neutral or anionic ligand. The ADC ligand is prepared from the corresponding chiral formamidium salt precursor. The metal catalyst is used for asymmetric organic synthesis reactions such as hydrosilations, hydrogenations, conjugate additions, and cross-couplings.
摘要:
Methods of performing cycloadditions are described that include (a) combining a first reactant and a second reactant in a hydrogen bonding solvent to form a reaction mixture; and (b) reacting the first reactant and the second reactant to form a cycloadduct. Methods of performing asymmetric catalytic reactions are also described that include (a) combining a first reactant, a second reactant, and a catalytic amount of a chiral hydrogen-bond donor in a solvent to form a reaction mixture; and (b) reacting the first reactant and the second reactant to form an enantiomeric excess of a reaction product. Reaction mixtures corresponding to these methods are also described.