摘要:
Techniques for encoding and decoding data are described. In an aspect, multiple code rates for a forward error correction (FEC) code may be supported, and a suitable code rate may be selected based on packet size. A transmitter may obtain at least one threshold to use for code rate selection, determine a packet size to use for data transmission, and select a code rate from among the multiple code rates based on the packet size and the at least one threshold. In another aspect, multiple FEC codes of different types (e.g., Turbo, LDPC, and convolutional codes) may be supported, and a suitable FEC code may be selected based on packet size. The transmitter may obtain at least one threshold to use for FEC code selection and may select an FEC code from among the multiple FEC codes based on the packet size and the at least one threshold.
摘要:
Techniques for increased finger demodulation capability in a hardware efficient manner are disclosed. In one aspect, I and Q samples are shifted into a parallel-accessible shift register. A plurality of chip samples are accessed from the shift register and operated on in parallel to produce a multi-chip result for a channel each cycle. These multi-chip results can be accumulated and output to a symbol-rate processor on symbol boundaries. The scheduling of shift register access, computation, and accumulation can be scheduled such that the hardware is time-shared to support a large number of channels. In another aspect, time-tracking of a large number of channels can be accommodated through channel-specific indexing of the contents of the shift register file. These aspects, along with various others also presented, provide for hardware efficient chip rate processing capability for a large number of channels, with a high degree of flexibility in deployment of those channels.
摘要:
A system involves a transmitting device (for example, a first wireless communication device) and a receiving device (for example, a second wireless communication device). In the receiving device, LLR (Log-Likelihood Ratio) values are stored into an LLR buffer. LLR bit width is adjusted as a function of packet size of an incoming transmission to reduce the LLR buffer size required and/or to prevent LLR buffer capacity from being exceeded. The receiver may use a higher performance demodulator in order to maintain performance despite smaller LLR bit width. In the transmitting device, encoder code rate is adjusted as a function of receiver LLR buffer capacity and packet size of the outgoing transmission such that receiver LLR buffer capacity is not exceeded. Any combination of receiver LLR bit width adjustment, demodulator selection, and encoder code rate adjustment can be practiced to reduce LLR buffer size required while maintaining performance.
摘要:
Techniques for encoding and decoding data are described. In an aspect, multiple code rates for a forward error correction (FEC) code may be supported, and a suitable code rate may be selected based on packet size. A transmitter may obtain at least one threshold to use for code rate selection, determine a packet size to use for data transmission, and select a code rate from among the multiple code rates based on the packet size and the at least one threshold. In another aspect, multiple FEC codes of different types (e.g., Turbo, LDPC, and convolutional codes) may be supported, and a suitable FEC code may be selected based on packet size. The transmitter may obtain at least one threshold to use for FEC code selection and may select an FEC code from among the multiple FEC codes based on the packet size and the at least one threshold.
摘要:
A system involves a transmitting device (for example, a first wireless communication device) and a receiving device (for example, a second wireless communication device). In the receiving device, LLR (Log-Likelihood Ratio) values are stored into an LLR buffer. LLR bit width is adjusted as a function of packet size of an incoming transmission to reduce the LLR buffer size required and/or to prevent LLR buffer capacity from being exceeded. The receiver may use a higher performance demodulator in order to maintain performance despite smaller LLR bit width. In the transmitting device, encoder code rate is adjusted as a function of receiver LLR buffer capacity and packet size of the outgoing transmission such that receiver LLR buffer capacity is not exceeded. Any combination of receiver LLR bit width adjustment, demodulator selection, and encoder code rate adjustment can be practiced to reduce LLR buffer size required while maintaining performance.
摘要:
Techniques for encoding and decoding data are described. In an aspect, multiple code rates for a forward error correction (FEC) code may be supported, and a suitable code rate may be selected based on packet size. A transmitter may obtain at least one threshold to use for code rate selection, determine a packet size to use for data transmission, and select a code rate from among the multiple code rates based on the packet size and the at least one threshold. In another aspect, multiple FEC codes of different types (e.g., Turbo, LDPC, and convolutional codes) may be supported, and a suitable FEC code may be selected based on packet size. The transmitter may obtain at least one threshold to use for FEC code selection and may select an FEC code from among the multiple FEC codes based on the packet size and the at least one threshold.
摘要:
Techniques for transmitting data in a communication system are described. A packet may be partitioned into multiple subpackets, and each subpacket may be encoded separately. The subpackets may be mapped to resources assigned for transmission of the packet, with at least one subpacket being mapped to a subset of the assigned resources. The assigned resources may include multiple tiles, with each tile corresponding to a block of time frequency resources. The subpackets may be mapped to the tiles such that (i) the subpackets are mapped to equal number of tiles to achieve similar decoding performance, (ii) each subpacket is mapped to at least NMIN tiles, if available, to achieve a certain minimum diversity order for the subpacket, and/or (iii) each subpacket is mapped to a subset of the multiple tiles, if possible, so that the subpacket can be decoded without having to demodulate all of the tiles.
摘要:
Techniques for transmitting data in a communication system are described. A packet may be partitioned into multiple subpackets, and each subpacket may be encoded separately. The subpackets may be mapped to resources assigned for transmission of the packet, with at least one subpacket being mapped to a subset of the assigned resources. The assigned resources may include multiple tiles, with each tile corresponding to a block of time frequency resources. The subpackets may be mapped to the tiles such that (i) the subpackets are mapped to equal number of tiles to achieve similar decoding performance, (ii) each subpacket is mapped to at least NMIN tiles, if available, to achieve a certain minimum diversity order for the subpacket, and/or (iii) each subpacket is mapped to a subset of the multiple tiles, if possible, so that the subpacket can be decoded without having to demodulate all of the tiles.
摘要:
An improved processing engine for performing Fourier transforms includes an instruction processor configured to process sequential instruction software commands and a Fourier transform engine coupled to the instruction processor. The Fourier transform engine is configured to perform Fourier transforms on a serial stream of data. The Fourier transform engine is configured to receive configuration information and operational data from the instruction processor via a set of software tasks.
摘要:
Techniques for segmented CDMA searching are disclosed. In one aspect, a searcher comprises a plurality of storage elements selectable for performing a plurality of segmentable search tasks, each storage element operable for storage of and access to state information for one of the plurality of search tasks. In another aspect, a first search task is interrupted in progress, the state information for the first task is stored, a second search task is performed, and the first search task is continued using the stored state information. In yet another aspect, a search task is segmented into smaller search segments, sized to fit within contiguous available time in the searcher. Various other aspects of the invention are also presented. These aspects have the benefit of circuit area and search-time efficiency which translate into reduced costs, increased standby time, increased acquisition speed, higher quality signal transmission, increased data throughput, decreased power, and improved overall system capacity.