Abstract:
An electric light bulb, in particular a halogen light bulb designed to be operated by mains voltage includes a substantially axially symmetrical bulb and a single-coil filament mounted in the bulb. The filament includes at least one incandescent coil section disposed outside the bulb axis. The incandescent coil is disposed axially in a transparent cylindrical sleeve which has an interference filter that reflects infra-red rays.
Abstract:
The invention relates to an electric light bulb, in particular a halogen light bulb designed to be operated by mains voltage. Said light bulb comprises a substantially axially symmetrical bulb (1) and a single-coil filament (2) mounted in said bulb, said filament comprising at least one incandescent coil section (22, 23) lying outside the bulb axis (A-A). According to the invention, the incandescent coil section(s) (22, 23) is/are disposed axially in a transparent cylindrical sleeve (7, 8), which has an interference filter (71, 81) that reflects infra-red rays.
Abstract:
Luminous body for an incandescent lamp and method for producing such a luminous body. A wire for a luminous body is used whose diameter increases from the outside in. The production method is based either on a deposition method or a metal-removal method.
Abstract:
A reflector lamp, in particular a halogen reflector lamp, has a light-transmitting lamp vessel, in which at least one luminous member is accommodated, at least one vessel section of the lamp vessel being provided with a reflective coating. According to the invention, the reflective coating has an interference filter, which is substantially impervious to light in the visible wavelength range and has defined transmission and reflection properties for light in the infrared wavelength range.
Abstract:
A light source comprising a heatable filament (1) or an electrode, wherein the filament (1) or the electrode is arranged in a lamp (2) or in a tube. In order to use the light source in a wide variety of manners even in rough conditions, the filament (1) or the electrode is provided at least partially with a mechanical stabilization system. The invention also relates to a method for mechanical stabilization of the filament (1) or electrode of a light source, wherein stabilization is produced by exposing the filament (1) or electrode to a short pulsed gas pressure increase, involving a rare gas, during heating. Stabilization may also be produced by a coating or deposition (4).
Abstract:
A reflector lamp whose lamp receptacle (1) is provided in part with a reflective coating (6) as well as a reflector contour. The coating is composed of at least two layers of highly heat-resistant metals. One of the layers reflects as well as possible while the superimposed layer absorbs as well as possible.
Abstract:
An incandescent lamp having a carbide containing luminous element, uses a wire for the luminous element that is coated on the outside with at least two different high melting metal compounds from at least one of the groups of carbides, borides and nitrides. The luminous element reaches a temperature of at least 3000° K during operation.
Abstract:
The invention relates to a light bulb comprising an illumination body, which is inserted, together with a filler material, into a bulb in a vacuum-tight manner. The illumination body has a metal carbide, whose melting point lies above that of tungsten. The current supply is configured in two parts from a first section and a second section. The current supply is configured integrally with the illumination body from a single wire and is covered with a coating that reduces the susceptibility to breakage.
Abstract:
The invention relates to an incandescent lamp (1) which is provided with an illuminant (7) which is inserted in a bulb (2) together with a filling in a vacuum-tight manner, the illuminant (7) comprising a metal carbide that has a melting point above that of tungsten. The bulb also comprises a source and a sink for a material of which the illuminant is depleted during use.
Abstract:
The invention relates to an incandescent lamp having a carbide-containing luminous element and current supplies holding the luminous element. A luminous element is introduced into a bulb together with a filling in a vacuum-tight manner, the luminous element having a metal carbide the melting point of which is preferably above that of tungsten, and the luminous element being helical. The luminous element has a core wire and a wrapped filament and is constituted of various materials and contains a metal carbide.