摘要:
To measure the channel quality of the own cell accurately in a condition where there is no interference from a neighbor cell. A wireless communication terminal according to the invention is a wireless communication terminal to be connected to a base station for transmitting and receiving data to/from the base station, the wireless communication terminal including: a receiver that receives a signal which includes control information provided for measuring a channel quality of own cell from the base station; an extractor that extracts the control information from the signal received by the receiver; a measurement section that measures, on the basis of the control information, the channel quality of the own cell in a domain where a neighbor cell does not transmit a signal; and a transmitter that transmits a measurement result of the channel quality of the own cell measured by the measurement section, to the base station.
摘要:
A wireless communication relay station apparatus, a wireless communication apparatus, a wireless communication relay method and a wireless communication method are presented that effectively utilize resources and prevent loop interference. A wireless communication relay station relays communication between a first wireless communication apparatus and a second wireless communication apparatus in at least two or more frequency bands and includes a transmitter for using a first subframe to transmit a first uplink signal to the first wireless communication apparatus in a first frequency band, and transmitting a first downlink signal to the second wireless communication apparatus in a second frequency band. A relay station receiver receives a second downlink signal from the first wireless communication apparatus in the first frequency band, and receives a second uplink signal from the second wireless communication apparatus in the second frequency band.
摘要:
Disclosed is a wireless communication apparatus and wireless communication method wherein flexible frequency scheduling is performed without increasing the scale of the DFT (Discrete Fourier Transform) circuitry. For example, when resource allocation information is reported indicating whether or not a resource has been allocated to each of a plurality of RBGs (RB groups) into which the system bandwidth is divided, as in Type 0 allocation, if the number of reported RBs reported by the resource allocation information cannot be expressed as “2̂n×3̂m×5̂l”, an allocated RB number setting section (208) sets the number of allocated resource blocks used in the actual transmission band, corresponding to the reported RB number, to the number of resource blocks that can be represented by any of “2̂n×3̂m×5̂l”, and an allocated RB selection section (209); selects the allocated RB employed in the actual transmission band from the resource allocation information and allocated RB number
摘要:
A wireless communication device which can improve reception quality in a second other wireless communication device is disclosed, including a reception unit which receives a signal from a first other wireless communication device or a second other wireless communication device connected to the wireless communication device and the first other wireless communication device, a transmission power value setting unit which sets a transmission power value in a first subframe, in which the first other wireless communication device transmits a signal to the second other wireless communication device, to be higher than that in a second subframe in which the first other wireless communication device receives a signal from a third other wireless communication device connected to the first other wireless communication device, and a transmission power value switching control unit which performs switching in the first subframe to the transmission power value higher than that in the second subframe.
摘要:
In a wireless relay method for relaying a signal between a base station and a mobile station, if an SRS is transmitted in a subframe immediately previous to the backhaul subframe, the last symbol of an access link subframe is set as a fake symbol in which the SRS that the mobile station transmits to the wireless relay device is not configured. The signal transmitted from the mobile station to the wireless relay device in a previous symbol of one of the fake symbol is received, and switched to transmission from the wireless relay device to the base station. If the SRS is not transmitted in a subframe immediately previous to the backhaul subframe, the signal transmitted from the mobile station to the wireless relay device is received in the last symbol of the access link subframe, and switched to transmission from the wireless relay device to the base station.
摘要:
A wireless communication device which can improve reception quality in a second other wireless communication device is disclosed, including a reception unit which receives a signal from a first other wireless communication device or a second other wireless communication device connected to the wireless communication device and the first other wireless communication device, a transmission power value setting unit which sets a transmission power value in a first subframe, in which the first other wireless communication device transmits a signal to the second other wireless communication device, to be higher than that in a second subframe in which the first other wireless communication device receives a signal from a third other wireless communication device connected to the first other wireless communication device, and a transmission power value switching control unit which performs switching in the first subframe to the transmission power value higher than that in the second subframe.
摘要:
Provided is a radio communication terminal which is capable of measuring quality in communication with a handover destination with high accuracy. The radio communication terminal is capable of communicating with a base station or a relay node, and includes: a receiver which receives control information including information relating to measurement of measuring quality of a neighbor cell; an extractor which extracts information on a subframe where the measurement should be performed, which is a subframe where only transmission of a signal from the relay node connected to the base station is performed, from the information relating to the measurement; a measurement section which performs the measurement, on a subframe basis, based on the extracted information on the subframe where the measurement should be performed: and a transmitter which transmits a result, of the measurement to the base station or the relay node.
摘要:
To measure the channel quality of adjacent cells with satisfactory precision without interference of a current cell. A wireless communication terminal of the invention is connected to a relay station and configured to receive data from at least one of the relay station, a base station, and another relay station different from the relay station. The wireless communication terminal includes a receiver which receives a signal including control information for measuring the channel quality of the non-connected base station or another non-connected relay station from the connected relay station, an extractor which extracts the control information from the signal received by the receiver, a measurement section which measures the channel quality of the non-connected base station or non-connected another relay station in a region, in which the connected relay station does not transmit other signals to the wireless communication terminal, on the basis of the control information, and a transmitter which transmits the measurement result of the channel quality of the non-connected base station or another non-connected relay station measured by the measurement section to the connected relay station.
摘要:
Disclosed is a frequency band allocation method which reduces PAPR (peak to average power ratio) when performing a single carrier transmission in the uplink line of an LTE+ (LTE Advanced) system in a system using both of an LTE (Long Term Evolution) system and the LTE+ system. In the frequency band allocation method, a UL band for the LTE is arranged adjacently in a lower frequency band than the UL band for the LTE+. With this arrangement, it is possible to prevent division of the band for the LTE+by the uplink line control channel (such as PUCCH) transmitted by an LTE mobile station and to allocate a wide band continuously with the LTE+ mobile station. Especially when the LTE+ mobile station performs a single carrier transmission with the uplink line, the PAPR can be reduced since it is possible to allocate a band continuous with the single carrier signal.
摘要:
A base station, a terminal, a transmission method and a reception method that allow the data processing on a reception side to have a margin irrespective of the time position of a resource region where control information is mapped. In a base station (100), a subframe type determining unit (101) determines, according to a configuration pattern applied to the local base station apparatus and being one of a plurality of configuration patterns different between downlink and uplink subframe configurations in time division multiplex, whether a subframe to be determined is a first type of subframe where control information is mapped only to a PDCCH region or a second type of subframe where the control information is mapped to both the PDCCH region and an R-PDCCH region. An allocation region candidate determining unit (102) determines, based on a result of the determination by the subframe type determining unit (101), a mapping region, where the control information is mapped, in the PDCCH or R-PDCCH region in the subframe to be determined.