摘要:
An apparatus, method, and computer program product for generating and correspondingly decoding an information element adapted to encode a set of supported carrier combinations for a user equipment in a dual-band multi-carrier wireless communication system. Here, the information element corresponds to a geometric representation of the set of supported carrier combinations, such as a grid that has a first axis corresponding to a first band, and a second axis corresponding to a second band. This way, the grid includes a plurality of cells, each cell representing a carrier combination in the first band and the second band.
摘要:
Various processing options and systems are provided for setting/controlling feedback indicators referred to as “Happy Bits” in a wireless communication network using multiple uplink carriers. In one aspect, a Happy Bit is determined independently for each one of a plurality of uplink carriers based on channel conditions and buffer lengths for the respective carrier. For example, if a UE is transmitting the maximum data allowed by its serving grant for that carrier, the UE has available power to increase the data rate on that carrier, and the TEBS delay is greater than a certain threshold, then the Happy Bit for that carrier may be set to Unhappy to inform the Node B that the UE is capable of transmitting at a higher data rate on that carrier.
摘要:
This innovation relates to systems and methods for multiple carrier allocation in wireless communication networks, and more particularly to allocation and/or de-allocation of one or multiple carriers on the uplink to a high-speed uplink packet access user. A radio network controller can allocate uplink carriers to users based on a plurality of criteria, including but not limited to network loading, channel conditions, and so forth. The allocation messages can be transmitted to the user via layer three messages or layer one signaling.
摘要:
This innovation relates to systems and methods for multiple carrier allocation in wireless communication networks, and more particularly to allocation and/or de-allocation of one or multiple carriers on the uplink to a high-speed uplink packet access user. A radio network controller can allocate uplink carriers to users based on a plurality of criteria, including but not limited to network loading, channel conditions, and so forth. The allocation messages can be transmitted to the user via layer three messages or layer one signaling.
摘要:
Systems and methodologies are described that facilitate power distribution and data allocation in a multi-carrier wireless communication system. A portion of transmit power can be pre-allocated to an anchor carrier to support non-scheduled data flows. Remaining power is split among all carriers, including the anchor carrier, after pre-allocation. Data from one or more flows, scheduled and non-scheduled, are allocated to the carriers in accordance with priorities associated with the one or more flows. Allocation of data can be performed sequentially starting with a non-anchor carrier. In addition, non-scheduled data flows can be restricted to the anchor carrier.
摘要:
Systems and methodologies are described that facilitate split a common total power resource among a plurality of carriers. A power distribution scheme can be employed jointly across the plurality of carriers to determine an amount of power to allocate to respective carriers. Based upon an amount of power allocated, a packet format can be selected for each carrier based upon the amount of power allocated to the carrier and/or a serving grant associated with the carrier.
摘要:
Various processing options and systems are provided for setting/controlling feedback indicators referred to as “Happy Bits” in a wireless communication network using multiple uplink carriers. In one aspect, a Happy Bit is determined independently for each one of a plurality of uplink carriers based on channel conditions and buffer lengths for the respective carrier. For example, if a UE is transmitting the maximum data allowed by its serving grant for that carrier, the UE has available power to increase the data rate on that carrier, and the TEBS delay is greater than a certain threshold, then the Happy Bit for that carrier may be set to Unhappy to inform the Node B that the UE is capable of transmitting at a higher data rate on that carrier.
摘要:
Systems and methodologies are described that facilitate power distribution and data allocation in a multi-carrier wireless communication system. A portion of transmit power can be pre-allocated to an anchor carrier to support non-scheduled data flows. Remaining power is split among all carriers, including the anchor carrier, after pre-allocation. Data from one or more flows, scheduled and non-scheduled, are allocated to the carriers in accordance with priorities associated with the one or more flows. Allocation of data can be performed sequentially starting with a non-anchor carrier. In addition, non-scheduled data flows can be restricted to the anchor carrier.
摘要:
Systems and methodologies are described that facilitate split a common total power resource among a plurality of carriers. A power distribution scheme can be employed jointly across the plurality of carriers to determine an amount of power to allocate to respective carriers. Based upon an amount of power allocated, a packet format can be selected for each carrier based upon the amount of power allocated to the carrier and/or a serving grant associated with the carrier.
摘要:
A method for wireless communications is provided. The method includes applying independent power controls to two or more carriers from a set of high speed packet access signals. The method includes monitoring power across the two or more carriers to determine power levels for the set of high speed packet access signals. The method also includes automatically scaling at least one of the independent power controls in view of the determined power levels for the set of high speed packet access signals. The method also includes setting the minimum power offset of the data channel independently on each carrier.