Abstract:
Methods and systems for filtered image data recovery using lookback include storing first, second, and third data captures received from the image sensor in a first memory component and a second memory component. The methods and systems also include identifying a second detection in the second data capture and a third detection in the third data capture by filtering the first, second, and third data captures. The second detection and the third detection each exceed a pixel intensity threshold. The methods and systems also include correlating the second detection and the third detection to identify at least one track. The methods and systems also include detecting a first detection in the first data capture stored in the second memory component, the first detection being a pixel intensity value that is less than the threshold or an initiation event having a pixel intensity value that is less than the threshold.
Abstract:
Methods, systems, and computer readable media for video image recovery from transient blockage or corruption artifacts include receiving first and second data captures from an image sensor having first and second pluralities of pixel intensity values corresponding to pixel locations of the first and second data captures. The methods, systems, and computer readable media also include identifying in the second data capture, one or more of the second pixel intensity values exceeding a contrast threshold to detect a transient blockage. The methods, systems, and computer readable media also include replacing the one or more of the second pixel intensity values exceeding the contrast threshold with one or more of the first pixel intensity values to generate a corrected data capture.
Abstract:
Methods and systems for non-stationary image sensor frame registration include receiving a data capture from an image sensor in motion, spatially filtering at least one pixel intensity value within the data capture to create a spatially filtered image, predictively differencing a filtered pixel intensity value of the spatially filtered image from a predicted intensity value, and generating a predictively differenced image based on the predictive differencing.
Abstract:
An optical system recycles heat from a cooler coupled with an image sensor across a heat transfer element in order to warm and de-ice a window. The optical system may be implemented in high altitude or space vehicles/platforms, regardless of whether manned or unmanned, and the window may be outwardly facing relative to the vehicle/platform so at to allow electromagnetic radiation to pass therethrough onto the image sensor. The optical system enables the reduction of size, weight, and power by recycling heat exhausted from the cooler to warm the window, thus eliminating the need for a separate de-icing system or device for the window.
Abstract:
Exemplary embodiments provide a method, a system, and a computer readable medium for maintaining detection capability when a frame is corrupted. A plurality of data points of a multispectral gain in a frame is monitored. It is determined that the frame is corrupted by analyzing the plurality of data points. When the frame is corrupted, a single spectrum threat detection system is used instead of a multispectral threat detection system.
Abstract:
A mechanism for determining atmospheric conditions from an image is described. A mechanism for determining atmospheric conditions includes determining an intensity value for pixels above and below the horizon in an image, calculating a slope between the intensity values for the pixels above the horizon, and a slope between the intensity values for the pixels below the horizon, and determining a difference between the slopes to determine the atmospheric conditions.
Abstract:
A method and apparatus for calculating and accounting for non-uniformity of pixels within an infrared (IR) focal plane sensor utilizing an infrared light emitting diode (IR LED) to wash out environmental infrared light is provided. The IR LED may back propagate through an optical path of an IR sensor to illuminate pixels on a focal plane array, thereby providing data by which the non-uniformity offsets may be calculated and removed for normal operation of the IR sensor.
Abstract:
A method of determining the point source quality of a set of pixels associated with a detected energy signature is discussed that pre-records ideal test point source signatures at various sub-pixel locations and radiant intensities throughout the overall sensor field of view in a focal plane array, determines the sub-pixel location of an observed source, and compares the signature at a pixel of the observed source to the pre-recorded “ideal source” signatures at the determined sub-pixel location. to determine point source correlation.
Abstract:
A method and apparatus for calculating and accounting for non-uniformity of pixels within an infrared (IR) focal plane sensor utilizing an infrared light emitting diode (IR LED) to wash out environmental infrared light is provided. The IR LED may back propagate through an optical path of an IR sensor to illuminate pixels on a focal plane array, thereby providing data by which the non-uniformity offsets may be calculated and removed for normal operation of the IR sensor.
Abstract:
An mechanism for range estimation mapping that includes creation of a world map on an azimuth/elevation (AZ/EL) grid, relation of the grid to an earth-fixed north, east, and down (NED) coordinate system through an address table, and association of each pixel in each frame, by a programmable device, with an entry from the address table in order to determine a range is discussed. The associations may be repeated for each frame while an updated world map and address table are generated. When an updated address table is complete, the process may begin anew using the updated data.