Abstract:
The present disclosure relates to microcapsules with shell and a core with an average particle size of the microcapsules in the range from 0.5 to 20 μm, wherein the shell is a polyester and wherein the core material comprises an enzyme, a method of making the microcapsules and methods of using the microcapsules in the field of recovery of hydrocarbons from a subterranean formation.
Abstract:
The present invention relates to a composition of spherical microparticles composed of a wall material and at least one cavity that comprises a gas and/or a liquid, which have pores on the surface thereof, wherein the spherical microparticles have a mean particle diameter of 10-600 μm and wherein at least 80% of those microparticles, the particle diameter of which does not deviate from the mean particle diameter of the microparticles of the composition by more than 20%, each have on average at least 10 pores, the diameter of which is in the range from 1/5000 to 1/5 of the mean particle diameter, and, furthermore, the diameter of each of these pores is at least 20 nm, wherein the wall material consists of a composition comprising at least one aliphatic-aromatic polyester and at least one additional polymer, wherein the additional polymer is selected from the group consisting of polyhydroxy fatty acids, poly(p-dioxanones), polyanhydrides, polyesteramides, polysaccharides and proteins, to a method for the preparation thereof and use thereof.
Abstract:
The application describes a process for the preparation of microcapsules, wherein the microcapsules have a volume average diameter d of 15 to 90 μηη and a percentage of the shell weight of 3 to 40%, with reference to the total weight of capsules, wherein the shell of the microcapsules comprises at least one polyurea and the core comprises at least one lipophilic component, comprising the step of adding hydroxyalkylcellulose to a dispersion of polyurea microcapsules, microcapsules and their uses.
Abstract:
The present invention relates to compositions of spherical microparticles composed of a wall material and at least one cavity that comprises a gas and/or a liquid, which have pores on the surface thereof, wherein the spherical microparticles have a mean particle diameter of 10-600 μm and wherein at least 80% of those microparticles, the particle diameter of which does not deviate from the mean particle diameter of the microparticles of the composition by more than 20%, each have on average at least 10 pores, the diameter of which is in the range from 1/5000 to ⅕ of the mean particle diameter, and, furthermore, the diameter of each of these pores is at least 20 nm,wherein the wall material consists of a composition comprising at least one aliphatic-aromatic polyester, and the wall material has a solubility at 25° C. of at least 50 g/l in dichloromethane, a method for the preparation thereof and also the use thereof.
Abstract:
The present invention relates to microcapsules comprising a capsule core and a capsule shell wherein the capsule shell comprises a core surrounding layer of a polyvinyl alcohol and an adjacent layer of a polyoxazoline, a process of their production and their use.
Abstract:
The present invention relates to a process for producing microcapsules which contain a shell and a core of a liquid water-insoluble material, where (a) a premix (I) is prepared from water and a protective colloid; (b) a further premix (II) is prepared from the water-insoluble material and at least bifunctional isocyanate (A) or a mixture of two or more different isocyanates containing (A); (c) the two premixes (I) and (II) are mixed together until an emulsion is formed; (d) at least a bifunctional amine is then poured into the emulsion from step (c); and (e) the emulsion is then heated until the microcapsules are formed, and where the liquid water-insoluble material comprises a pesticide, where the protective colloid is a polyvinyl alcohol copolymer having hydrolysis degrees from 60 to 99.9%, and where the polyvinyl alcohol copolymer contains comonomers with anionic groups. Further subject matter are microcapsules obtainable by said process. The present invention also relates to a method of controlling phytopathogenic fungi and/or undesired plant growth and/or undesired insect or mite attack and/or for regulating the growth of plants, wherein the microcapsules are allowed to act on the respective pests, their environment or the crop plants to be protected from the respective pest, on the soil and/or on undesired plants and/or on the crop plants and/or on their environment.