-
公开(公告)号:US20170260115A1
公开(公告)日:2017-09-14
申请号:US15529133
申请日:2015-11-18
Applicant: BASF SE
Inventor: Jan-Oliver WEIDERT , Sandra KRAMP , Regina BENFER , Alexander PANCHENKO , Andreas WEICKGENANNT , Norbert GUTFRUCHT , Klaus BREUER , Artur KOZICKI , Ralph BUSCH
IPC: C07C7/04 , B01D3/00 , B01D3/10 , C07C209/86 , C07C211/36
CPC classification number: C07C7/04 , B01D3/007 , B01D3/10 , C07C209/86 , C07C209/88 , C07C211/36 , C07C2601/14
Abstract: A process for preparing trans-enriched MDACH, including: distilling an MDACH starting mixture in the presence of an auxiliary, which is an organic compound having a molar mass of 62 to 500 g/mol, a boiling point at least 5° C. above the boiling point of cis,cis-2,6-diamino-1-methylcyclohexane, and 2 to 4 functional groups, each of which is independently an alcohol group or a primary, secondary or tertiary amino group. The MDACH starting mixture includes 0 to 100% by weight of 2,4-MDACH and 0 to 100% by weight of 2,6-MDACH, based on the total amount of MDACH present in the MDACH starting mixture. The MDACH starting mixture includes both trans and cis isomers. Trans-enriched MDACH includes 0 to 100% by weight of 2,4-MDACH and 0 to 100% by weight of 2,6-MDACH, where the proportion of trans isomers in the mixture is higher than the proportion of trans isomers in the MDACH starting mixture.
-
公开(公告)号:US20180105479A1
公开(公告)日:2018-04-19
申请号:US15561711
申请日:2016-03-23
Inventor: Jan Pablo JOSCH , Ragavendra Prasad BALEGEDDE RAMACHANDRAN , Christian Walsdorff , Regina BENFER , Anton WELLENHOFER , Ulrike WENNING , Heinz BOELT , Hendrik REYNEKE , Christine TOEGEL
Abstract: The invention relates to a process for producing butadiene from n-butenes which comprises the steps of: A) providing a vaporous n-butenes-comprising input gas stream a1 by evaporating a liquid n-butenes-comprising stream a0; B) introducing the vaporous n-butenes-comprising input gas stream a1 and an at least oxygenous gas into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene to obtain a product gas stream b comprising butadiene, unconverted n-butenes, steam, oxygen, low-boiling hydrocarbons, high-boiling secondary components, possibly carbon oxides and possibly inert gases, Ca) chilling the product gas stream b by contacting with a cooling medium comprising an organic solvent in at least one chilling zone, the cooling medium being at least partially recycled into the chilling zone, Cb) compressing the chilled product gas stream b which is possibly depleted of high-boiling secondary components in at least one compression stage to obtain at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene, n-butenes, steam, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases, D) removing noncondensable and low-boiling gas constituents comprising oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons comprising butadiene and n-butenes into an absorption medium to obtain a C4-hydrocarbons-laden absorption medium stream and the gas stream d2 and subsequently desorbing the C4 hydrocarbons from the laden absorption medium stream to obtain a C4 product gas stream d1, wherein at least some of the recycled cooling medium from step Ca) is brought into thermal contact with the liquid n-butenes-comprising stream a0 in one or more indirect heat exchangers and at least some of the liquid n-butenes-comprising stream a0 is evaporated by indirect heat transfer with the recycled cooling medium.
-
公开(公告)号:US20180072638A1
公开(公告)日:2018-03-15
申请号:US15561623
申请日:2016-03-14
Inventor: Jan Pablo JOSCH , Stephan DEUBLEIN , Regina BENFER , Friedemann GAITZSCH , Hendrik REYNEKE , Christine TOEGEL , Ulrike WENNING , Anton WELLENHOFER , Heinz BOELT
Abstract: The invention relates to a process for producing butadiene from n-butenes, comprising the steps of: A) providing an n-butenes-comprising input gas stream a1, B) feeding the n-butenes-comprising input gas stream al, an oxygenous gas and an oxygenous cycle gas stream a2 into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene to obtain a product gas stream b comprising butadiene, unconverted n-butenes, steam, oxygen, low-boiling hydrocarbons, high-boiling secondary components, possibly carbon oxides and possibly inert gases, Ca) cooling down the product gas stream b and optionally at least partially removing high-boiling secondary components and steam to obtain a product gas stream b′, Cb) compressing and cooling the product gas stream b′ in at least one compression and cooling stage to obtain at least one aqueous condensate stream c1 and one gas stream c2 comprising butadiene, n-butenes, steam, oxygen, low-boiling hydrocarbons, possibly carbon oxides and possibly inert gases, Da) absorbing the C4 hydrocarbons comprising butadiene and n-butenes into an aromatic hydrocarbon solvent absorption medium stream A1 in an absorption column K1 and removing noncondensable and low-boiling gas constituents comprising steam, oxygen, low-boiling hydrocarbons, possibly carbon oxides, aromatic hydrocarbon solvent and possibly inert gases as gas stream d2 from the gas stream c2 to obtain a C4 hydrocarbons-laden absorption medium stream A1′ and the gas stream d2 and subsequently desorbing the C4 hydrocarbons from the laden absorption medium stream A1′ to obtain a C4 product gas stream d1, Db) at least partially recycling the gas stream d2 into the oxidative dehydrogenation zone as cycle gas stream a2, wherein said process comprises limiting the content of aromatic hydrocarbon solvent in the cycle gas stream a2 to less than 1 vol % by contacting in a further column K2 the gas stream d2 exiting the removal stage Da) with an at least partially recirculating liquid absorption medium stream A2 for the aromatic hydrocarbon solvent A1, and limiting the water content of the liquid absorption medium stream A2 in the column K2 to no more than 80 wt %.
-
公开(公告)号:US20180002254A1
公开(公告)日:2018-01-04
申请号:US15514077
申请日:2015-09-14
Inventor: Jan Pablo JOSCH , Philipp GRÜNE , Regina BENFER , Maximilian VICARI , Andre BIEGNER , Gergor BLOCH , Heinz BOELT , Hendrik REYNEKE , Christine TOEGEL , Ulrike WENNING
CPC classification number: C07C5/48 , B01D3/40 , C07C5/333 , C07C7/005 , C07C7/05 , C07C7/08 , C07C7/11 , C07C11/167
Abstract: The invention relates to a process for preparing butadiene from n-butenes, comprising the steps of: A) providing an input gas stream a comprising n-butenes, B) feeding the input gas stream a comprising n-butenes and a gas containing at least oxygen into at least one oxidative dehydrogenation zone and oxidatively dehydrogenating n-butenes to butadiene, giving a product gas stream b comprising butadiene, unconverted n-butenes, water vapor, oxygen, low-boiling hydrocarbons and high-boiling secondary components, with or without carbon oxides and with or without inert gases; Ca) cooling the product gas stream b by contacting with a cooling medium in at least one cooling zone, the cooling medium being at least partly recycled and having an aqueous phase and an organic phase, Cb) compressing the cooled product gas stream b which may have been depleted of high-boiling secondary components in at least one compression stage, giving at least one aqueous condensate stream c1 and one gas stream c2 comprising butadiene, n-butenes, water vapor, oxygen and low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases; D) removing uncondensable and low-boiling gas constituents comprising oxygen and low-boiling hydrocarbons, with or without carbon oxides and with or without inert gases, as gas stream d2 from the gas stream c2 by absorbing the C4 hydrocarbons comprising butadiene and n-butenes in an absorbent, giving an absorbent stream laden with C4 hydrocarbons and the gas stream d2, and then desorbing the C4 hydrocarbons from the laden absorbent stream, giving a C4 product gas stream d1, E) separating the C4 product stream d1 by extractive distillation with a butadiene-selective solvent into a stream e1 comprising butadiene and the selective solvent and a stream e2 comprising n-butenes; F) distilling the stream e1 comprising butadiene and the selective solvent into a stream f1 consisting essentially of the selective solvent and a stream f2 comprising butadiene, wherein stage Cb) comprises at least two compression stages Cba) and at least two cooling stages Cbb) configured in the form of quench columns, the cooling in the cooling stages being effected by direct contacting with a biphasic cooling medium having an aqueous phase and an organic phase.
-
-
-