Abstract:
A process for preparing water-absorbing polymer beads with high permeability by polymerizing droplets of a monomer solution, comprising monomers bearing acid groups, in a gas phase surrounding the droplets, wherein the monomer solution comprises polyvalent cations and the polymer beads have a mean diameter of at least 150 μm.
Abstract:
A process for preparing water-absorbing polymer beads with high permeability by polymerizing droplets of a monomer solution in a gas phase surrounding the droplets, wherein a water-insoluble inorganic salt is suspended in the monomer solution and the polymer beads have a mean diameter of at least 150 μm.
Abstract:
A process for producing water-absorbing polymer particles by polymerizing droplets of a monomer solution in a surrounding gas phase in a reaction chamber, wherein the monomer solution is metered into the reaction chamber via at least one bore, and the diameter is from 210 to 290 μm per bore and the metering rate is from 0.9 to 5 kg/h per bore.
Abstract:
A process for continuously preparing water-absorbing polymer beads, comprising the drying of a polymer gel on a forced-air belt dryer, the water content of the polymer gel being used to control the forced-air belt dryer during or after the drying.
Abstract:
A process for preparing water-absorbing polymer beads with high permeability by polymerizing droplets of a monomer solution, comprising monomers bearing acid groups, in a gas phase surrounding the droplets, wherein the monomer solution comprises polyvalent cations and the polymer beads have a mean diameter of at least 150 μm.
Abstract:
The present invention relates to a process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution in a surrounding heated gas phase and flowing the gas cocurrent through the polymerization chamber, wherein the temperature of the gas leaving the polymerization chamber is 130° C. or less, the gas velocity inside the polymerization chamber is at least 0.5 m/s, and the droplets are generated by using a droplet plate having a multitude of bores.
Abstract:
A process for producing water-absorbing polymer particles by polymerizing droplets of a monomer solution in a surrounding gas phase in a reaction chamber, wherein the monomer solution is metered into the reaction chamber via at least one bore, and the diameter is from 210 to 290 μm per bore and the metering rate is from 0.9 to 5 kg/h per bore.
Abstract translation:通过在反应室中聚合周围气相中的单体溶液的液滴来生产吸水性聚合物颗粒的方法,其中单体溶液通过至少一个孔计量到反应室中,直径为210-290 每孔数μm,孔径为0.9〜5 kg / h。
Abstract:
A process for classifying water-absorbing polymer beads, wherein the polymer beads are separated into n particle size fractions by means of at least n screens and n is an integer greater than 1.
Abstract:
The present invention relates to a process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution in a surrounding heated gas phase and flowing the gas cocurrent through the polymerization chamber, wherein the temperature of the gas leaving the polymerization chamber is 130° C. or less, the gas velocity inside the polymerization chamber is at least 0.5 m/s, and the droplets are generated by using a droplet plate having a multitude of bores.
Abstract:
A process for classifying water-absorbing polymer beads, wherein the polymer beads are separated into n particle size fractions by means of at least n screens and n is an integer greater than 1.