Abstract:
A therapeutic or diagnostic device comprises a wearable electrodes garment including electrodes disposed to contact skin when the wearable electrodes garment is worn, and an electronic controller operatively connected with the electrodes. The electronic controller is programmed to perform a method including: receiving surface electromyography (EMG) signals via the electrodes and extracting one or more motor unit (MU) action potentials from the surface EMG signals. The method may further include identifying an intended movement based at least on features representing the one or more extracted MU action potentials and delivering functional electrical stimulation (FES) effective to implement the intended movement via the electrodes of the wearable electrodes garment. The method may further include generating a patient performance report based at least on a comparison of features representing the one or more extracted MU action potentials and features representing expected and/or baseline MU action potentials for a known intended movement.
Abstract:
The present disclosure relates generally to systems, methods, and devices for interpreting neural signals to determine a desired movement of a target, transmitting electrical signals to the target, and dynamically monitoring subsequent neural signals or movement of the target to change the signal being delivered if necessary, so that the desired movement is achieved. In particular, the neural signals are decoded using a feature extractor, decoder(s) and a body state observer to determine the electrical signals that should be sent.
Abstract:
A chronically implanted medical device is disclosed that has an outermost layer formed from a conjugate of a polymer with lipoic acid, the conjugate having free 1,2-dithiolane groups. It is contemplated that this layer scavenges reactive oxygen species, i.e. acts as an antioxidant, and thus reduces inflammation and other adverse effects around the implant itself.
Abstract:
The present disclosure relates generally to systems, methods, and devices for interpreting neural signals to determine a desired movement of a target, transmitting electrical signals to the target, and dynamically monitoring subsequent neural signals or movement of the target to change the signal being delivered if necessary, so that the desired movement is achieved. In particular, the neural signals are decoded using a feature extractor, decoder(s) and a body state observer to determine the electrical signals that should be sent.
Abstract:
A chronically implanted medical device is disclosed that has an outermost layer formed from a conjugate of a polymer with lipoic acid, the conjugate having free 1,2-dithiolane groups. It is contemplated that this layer scavenges reactive oxygen species, i.e. acts as an antioxidant, and thus reduces inflammation and other adverse effects around the implant itself.
Abstract:
A chronically implanted medical device is disclosed that has an outermost layer formed from a conjugate of a polymer with lipoic acid, the conjugate having free 1,2-dithiolane groups. It is contemplated that this layer scavenges reactive oxygen species, i.e. acts as an antioxidant, and thus reduces inflammation and other adverse effects around the implant itself.
Abstract:
At least one electrical brain signal is received from a patient and is demultiplexed into an efferent motor intention signal and at least one afferent sensory signal (such as an afferent touch sense signal and/or an afferent proprioception signal). A demultiplexed afferent touch sense signal may be used to control a haptic device.
Abstract:
At least one electrical brain signal is received from a patient and is demultiplexed into an efferent motor intention signal and at least one afferent sensory signal (such as an afferent touch sense signal and/or an afferent proprioception signal). A functional electrical stimulation (FES) device is controlled to apply FES to control a paralyzed portion of the patient that is paralyzed due to a spinal cord injury of the patient. The controlling of the FES device is based on at least the efferent motor intention signal. A demultiplexed afferent touch sense signal may be used to control a haptic device. The afferent sensory signal(s) may be used to adjust the FES control.
Abstract:
A therapeutic or diagnostic device comprises a wearable electrodes garment including electrodes disposed to contact skin when the wearable electrodes garment is worn, and an electronic controller operatively connected with the electrodes. The electronic controller is programmed to perform a method including: receiving surface electromyography (EMG) signals via the electrodes and extracting one or more motor unit (MU) action potentials from the surface EMG signals. The method may further include identifying an intended movement based at least on features representing the one or more extracted MU action potentials and delivering functional electrical stimulation (FES) effective to implement the intended movement via the electrodes of the wearable electrodes garment. The method may further include generating a patient performance report based at least on a comparison of features representing the one or more extracted MU action potentials and features representing expected and/or baseline MU action potentials for a known intended movement.
Abstract:
A tremor suppression device includes a garment wearable on an anatomical region and including electrodes contacting the anatomical region when the garment is worn on the anatomical region, and an electronic controller configured to: detect electromyography (EMG) signals as a function of anatomical location and time using the electrodes; identify tremors as a function of anatomical location and time based on the EMG signals; and apply neuromuscular electrical stimulation (NMES) at one or more anatomical locations as a function of time using the electrodes to suppress the identified tremors.