Abstract:
The present disclosure discloses a fixing apparatus for fixing a substrate to be processed below a bearing base during an evaporation process, the substrate to be processed includes a base substrate, a ferromagnetic material is formed on a front surface or a back surface of the base substrate, and a magnetic field generator is disposed on a back surface of the bearing base at a location corresponding to the ferromagnetic material; the magnetic field generator is configured to generate a magnetic field so that the ferromagnetic material and the magnetic field generator are approaching to each other under an effect of the magnetic field generated by the magnetic field generator to fix a front surface of the bearing base with the back surface of the base substrate. An evaporation method is further disclosed.
Abstract:
A vacuum evaporation source apparatus is provided. The vacuum evaporation system includes an evaporation crucible, a first cover plate and a second cover plate. The first cover plate and the second cover plate are disposed at an outlet of the evaporation crucible. A plurality of first holes are disposed in the first cover plate penetrating its thickness direction and are evenly distributed and second via holes corresponding to the first via holes one to one are disposed in the second cover plate. The second cover plate is overlapped on the first cover plate with its position adjustable relative to the first cover plate along an extension direction of the first cover plate, and the overlapping area of each corresponding first via hole and second via hole is the same as the overlapping area of each pair of corresponding first via hole and second via hole. The second cover plate moves relative to the first cover plate and adjustment of the overlapping area of each pair of corresponding first via hole and second via hole is realized.
Abstract:
An organic light-emitting diode (OLED) array substrate and a display apparatus are provided. The OLED array substrate includes a plurality of OLEDs; the OLED includes an anode, a light-emitting layer and a cathode which are provided sequentially; the light-emitting layers are divided into a plurality of types by color (that is, the light-emitting layers are configured for emitting light of a plurality of colors), and are made of a host material and a guest material doped in the host material; and the OLED further includes an exciton blocking layer provided between the cathode and the light-emitting layer and in contact with the light-emitting layer, which is made of a host material of one light-emitting layer, and the host material of the one light-emitting layer has the biggest highest occupied molecular orbital energy level and the biggest triplet state energy level in the host materials of all light-emitting layers.
Abstract:
The present invention discloses a packaging device and a packaging method and relates to a field of manufacturing technique of a display panel. The packaging device is used to package a display panel, the display panel comprising a first substrate and a second substrate that are arranged opposed to each other and are able to be packaged by a sealing material, the packaging device comprising a first adsorption part and a second adsorption part that are able to attract each other through a magnetic force, one of the first adsorption part and the second adsorption part configured to be detachably arranged on the outside of the first substrate, and the other of the first adsorption part and the second adsorption part configured to be detachably arranged on the outside of the second substrate.
Abstract:
A display panel includes a base substrate including a first surface; another base substrate including a second surface disposed face the first surface; a first insulating layer disposed above the first surface of the base substrate, a plurality of grooves being disposed in a surface of the first insulating layer away from the base substrate; a first conductive layer disposed at a side of the first insulating layer away from the base substrate, the first conductive layer at least covering bottom faces and side walls of the plurality of grooves; a plurality of support portions disposed above the second surface of the another base substrate; and a second conductive layer disposed at a side of the plurality of support portions away from the another base substrate, the second conductive layer at least covering surfaces of the plurality of support portions facing away from the another base substrate and side faces of the plurality of support portions. Each support portion is embedded into a respective one of the plurality of grooves, and the first conductive layer is in electrical contact with the second conductive layer at the bottom faces and side walls of the plurality of grooves.
Abstract:
A display panel and a manufacturing method thereof are provided. The display panel includes a first substrate and a second substrate opposite to each other, the first substrate includes a first base, a pixel definition layer on the first base, and at least one OLED; each OLED includes a first electrode, a light emitting layer, and a second electrode sequentially provided on the first base; and the pixel definition layer defines pixel regions spaced apart, the at least one OLED is provided in the pixel regions, and the pixel definition layer between at least two adjacent pixel regions includes one opening; the second substrate includes a second base, and a connection electrode on a side of the second base proximal to the pixel definition layer, which is arranged inside the opening, and is electrically coupled to the second electrode of the OLEDs adjacent to the opening.
Abstract:
Disclosed are an organic light-emitting device and a method of manufacturing the same, and a display device. The organic light-emitting device includes: a first electrode layer, a second electrode layer, and an organic light-emitting layer sandwiched between the first electrode layer and the second electrode layer, wherein the first electrode layer includes a first transparent conductive layer, a nanostructured layer and a second transparent conductive layer sequentially, and the second transparent conductive layer is closer to the organic light-emitting layer than the first transparent conductive layer. In the organic light-emitting device, silver nanowires or carbon nanotubes can be introduced between the two transparent conductive layers of the first electrode layer, which facilitates the injection equilibrium of electrons-holes, thereby improving the quantum efficiency. Therefore, the organic light-emitting device has a high luminous efficiency.
Abstract:
A display panel and a manufacture method thereof, and a display apparatus are provided. The display panel has a display region and a border region that surrounds the display region and includes a peripheral circuit region and a peripheral region; the peripheral circuit region is between the display region and the peripheral region. At least a part of a barrier structure of the display panel is in the peripheral circuit region, and the barrier structure includes an organic barrier layer including an opening passing through the organic barrier layer and an inorganic barrier layer covering the organic barrier layer and filling the opening; an extension direction of the opening is same as that of an edge, close to the opening, of the display panel; the peripheral circuit is in the peripheral circuit region.
Abstract:
A packaging method of a display panel, the packaging method including: defining, on a cover plate, at least one adhesive coating region that each is to cover a respective target specially-shaped pattern and have a regular shape; forming a packaging adhesive in the at least one adhesive coating region; bonding the cover plate formed with the packaging adhesive with a substrate formed with at least one target specially-shaped pattern, so that a display region of each target specially-shaped pattern is located within a respective adhesive coating region; and cutting the substrate and the cover plate that have been bonded according to the target specially-shaped pattern to obtain the display panel.
Abstract:
Disclosed herein is a display substrate comprising: first electrode; an auxiliary electrode; a first layer of an electrically insulating material over the auxiliary electrode, wherein the first layer does not cover a first portion of a sidewall of the auxiliary electrode; a second layer of a material that exhibits electroluminescence (EL), wherein the second layer is in electric contact with the first electrode and does not cover the first portion of the sidewall; a second electrode in electric contact with the second layer and in electric contact with the auxiliary electrode at the first portion of the sidewall.