Abstract:
The present application discloses a display panel including a base substrate; a first micro LED array having a plurality of first micro LED pixels in a matrix along a first direction and a second direction on the base substrate; and a second micro LED array having a plurality of second micro LED pixels on a side of the first micro LED array distal to the base substrate, the plurality of second micro LED pixels being grouped into a plurality of groups of second micro LED pixels successively along the second direction, each of the plurality of groups of second micro LED pixels substantially along the first direction and comprising one or more rows of second micro LED pixels substantially along the first direction. Adjacent groups of the plurality of groups of second micro LED pixels are spaced apart from each other thereby exposing a portion of the first micro LED array.
Abstract:
A display screen, a display device and a display method are provided. The display screen includes: a display panel and a dye liquid crystal cell. The dye liquid crystal cell is arranged on a side of the display panel, and the dye liquid crystal cell is configured to control an emergent direction of light that has been transmitted through the dye liquid crystal cell under the influence of an electric field.
Abstract:
A pixel circuit and driving method thereof and display apparatus are disclosed. The pixel circuit comprises: a selection circuit (P1), whose input terminal is connected to a selection signal terminal, a high level signal terminal and a low level signal terminal, configured to control charging or discharging of a pixel capacitor according to a digital signal input by the selection signal terminal; a charging/discharging circuit (P2), whose input terminal is connected to an output terminal of the selection circuit and a same row gate line signal terminal corresponding to the pixel capacitor and output terminal is connected to the pixel capacitor, configured to charge or discharge the pixel capacitor under the control of the selection circuit; and a pre-charging circuit (P3), whose input terminal is connected to a previous row gate line signal terminal corresponding to the pixel capacitor and output terminal is connected to the pixel capacitor, configured to provide a reference voltage. This pixel circuit saves the digital-analogy conversion circuit and the analogy circuit part in the driving IC.
Abstract:
A display driving method is provided. The method comprises: determining whether scanning of at least one area of display areas is completed (S1); adjusting light-emitting luminance of display light source corresponding to the at least one area after the scanning of the at least one area is completed, such that display luminance of the at least one area maintains within a specified range to eliminate picture flicker (S2). The display driving method is capable of reducing commendably the change of display luminance of the at least one area by adjusting the light-emitting luminance of display light source corresponding to the at least one area, so that picture flicker caused by over change of the display luminance would be avoided. There are provided a display driving method and apparatus and a display device comprising the display driving apparatus.
Abstract:
A three-dimensional display system includes: an LED array and a light control layer disposed on a base substrate; wherein the LED array is used to form polarized lights of different polarization directions; the light control layer is used to control a light emission order of the polarized lights of different polarization directions.
Abstract:
A pixel structure, a driving method thereof, and a display device are provided. The accommodation chamber of the pixel structure includes: a first substrate and a second substrate opposite to each other, an accommodation space being formed therebetween; a light absorption layer in the accommodation space, including a flowable insulating liquid layer; a transparent thin film in the accommodation space, located between the insulating liquid layer and the second substrate, a refractive index of the transparent thin film being less than or equal to that of the insulating liquid layer. The accommodation chamber is in one of the at least two following states: in a first state, the insulating liquid layer is separated from the transparent thin film such that light rays from the second substrate are totally reflected; and in a second state, the insulating liquid layer and the transparent thin film at least are partially in direct contact.
Abstract:
The present disclosure discloses a GOA unit driving circuit and a driving method thereof, a display panel and a display device. The disclosure relates to field of display technology, and solves the technical issue of increased power consumption of the display device due to the power consumption of the parasitic capacitance existing in the transistors in the GOA unit. The GOA unit driving circuit comprises a plurality of sets of GOA units, each of which includes at least one GOA unit; a plurality of clock selecting units, which are in one-to-one correspondence with the plurality of sets of GOA units, and each clock selecting unit is connected to a corresponding set of GOA units and connected to one of a plurality of clock signal terminals and at least one of a plurality of clock selection signal terminals, respectively. An intersection of any two sets of GOA units in the plurality of sets of GOA unit is an empty set, and each clock selecting unit transmits a signal of the clock signal terminal to which the clock selecting unit is connected to the corresponding set of GOA units, under control of a signal of the at least one clock selection signal terminal to which the clock selecting unit is connected. The GOA unit driving circuit provided by the present disclosure may be applied to a display device.
Abstract:
A pixel circuit and driving method thereof and display apparatus are disclosed. The pixel circuit comprises: a selection circuit (P1), whose input terminal is connected to a selection signal terminal, a high level signal terminal and a low level signal terminal, configured to control charging or discharging of a pixel capacitor according to a digital signal input by the selection signal terminal; a charging/discharging circuit (P2), whose input terminal is connected to an output terminal of the selection circuit and a same row gate line signal terminal corresponding to the pixel capacitor and output terminal is connected to the pixel capacitor, configured to charge or discharge the pixel capacitor under the control of the selection circuit; and a pre-charging circuit (P3), whose input terminal is connected to a previous row gate line signal terminal corresponding to the pixel capacitor and output terminal is connected to the pixel capacitor, configured to provide a reference voltage. This pixel circuit saves the digital-analogy conversion circuit and the analogy circuit part in the driving IC.
Abstract:
A thin film transistor and a manufacturing method thereof, an array substrate and a manufacturing method thereof, and a display panel are provided. The thin film transistor includes an active layer and a wire grid which is disposed at least on a surface of an active region of the active layer and is made of a conductive material. The active layer includes a source region, a drain region, and the channel region between the source region and the drain region. The wire grid includes a plurality of wire grid sections which are spaced apart from each other, and in a direction from the source region to the drain region, a length of the channel region is longer than a length of the wire grid section.
Abstract:
A light emitting diode display panel and a manufacturing method thereof, and a display device. The light emitting diode display panel includes a substrate, a plurality of light emitting diodes arranged in an array on the substrate; a plurality of polarization layers located on a light exit side of the plurality of light emitting diodes respectively, and the plurality of polarization layers are in a one-to-one correspondence to the plurality of light emitting diodes; the plurality of polarization layers include a plurality of first polarization layers and a plurality of second polarization layers having different polarization directions.