Abstract:
An energy conversion device is provided, including a motor coil (11), a bridge arm converter (12), and a bidirectional bridge arm (13). The bridge arm converter (12) is connected to the motor coil (11) and the bidirectional bridge arm (13). The motor coil (11), the bridge arm converter (12), and the bidirectional bridge arm (13) are all connected to an external charging port (10). Both the bridge arm converter (12) and the bidirectional bridge arm (13) are connected to an external battery 200. The motor coil (11), the bridge arm converter (12), and the external charging port (10) form a DC charging circuit for charging the external battery 200. The motor coil (11), the bridge arm converter (12), the bidirectional bridge arm (13), and the external charging port (10) form an AC charging circuit for charging the external battery (200). The motor coil (11), the bridge arm converter (12), and the external battery (200) form a motor drive circuit.
Abstract:
A power supply system for an electric vehicle includes a battery module, a first DC/DC converter, a second DC/DC converter, a first switch, a second switch and a third switch. The battery module has a negative electrode, a first positive electrode and a second positive electrode. The first DC/DC converter has an input terminal connected with the second positive electrode. The second DC/DC converter has an input terminal connected with the second positive electrode. The first switch is connected between the second positive electrode and the first DC/DC converter. The second switch is connected between the second positive electrode and the second DC/DC converter. The third switch is connected between the first positive electrode and an output terminal of the second DC/DC converter.
Abstract:
A power supply system for an electric vehicle includes a battery module, a first DC/DC converter, a second DC/DC converter, a first switch, a second switch and a third switch. The battery module has a negative electrode, a first positive electrode and a second positive electrode. The first DC/DC converter has an input terminal connected with the second positive electrode. The second DC/DC converter has an input terminal connected with the second positive electrode. The first switch is connected between the second positive electrode and the first DC/DC converter. The second switch is connected between the second positive electrode and the second DC/DC converter. The third switch is connected between the first positive electrode and an output terminal of the second DC/DC converter.
Abstract:
An energy conversion apparatus includes: an inductor, where a first end of the inductor is connected to an external charging port; a bridge arm converter, connected between an external battery and the external charging port, where the bridge arm converter includes a first phase bridge arm, a second phase bridge arm, and a third phase bridge arm connected in parallel, and a second end of the inductor is connected to the first phase bridge arm; a voltage transformation unit, where an input end of the voltage transformation unit is connected to the second phase bridge arm and the third phase bridge arm; and a first bidirectional H-bridge, connected between an output end of the voltage transformation unit and the external battery. The external battery is connected to and drives an external motor. The external charging port is connected to a power supply and charges the external battery.