Abstract:
Provided are a touch panel and an input device. The touch panel includes a plurality of first touch pad groups disposed in a first direction and having a plurality of first touch pads disposed in the first direction and extending in a second direction. Here, the first touch pads disposed at the same position in the respective first touch pad groups are connected in common with a corresponding one of a plurality of first channels, a first input signal is applied to one of the first touch pads of each first touch pad group, and the first touch pads receiving the first input signal are connected with the first channels, respectively.
Abstract:
Provided are a touch sensor device and a method of switching an operation mode in the touch sensor. The touch sensor device includes a touch panel for receiving an input signal generated by a touch on a surface of the touch panel and generating a touch signal on the basis of a change in internal capacitance; and a touch sensor chip for receiving the touch signal, calculating touch information, generating sense data, comparing the sense data with previously stored pattern signals, and controlling the touch sensor device to perform an operation corresponding to the received input signal.
Abstract:
Provided are a touch sensor device and a pointing coordinate determination method thereof. The touch sensor device includes a touch panel, a touch sensing unit that receives a touch signal, senses touch information according to a simple touch or touch strength of a touch object, and outputs an electrical signal, a touch data storage that stores touch data in response to the electrical signal, a template storage that pre-stores templates for various outlines of the touch object in response to the electrical signal, and a touch data processor that senses an outline of the touch object according to a distance difference related to the touch object by receiving the touch data, and determines pointer coordinates of a pointing device by receiving and mapping a stored template of the touch object.
Abstract:
Disclosed is a method for controlling a light source and optical input device using the same. The light source controlling method includes setting a shutter ON time of an image sensor using a statistical value of an image obtained through the image sensor, and setting a light source ON time in accordance with the shutter ON time and turning on/off the light source and the shutter in response to the set light source ON time and the set shutter ON time.Thus, undesired consumption of electric power of the light source is prevented to increase energy efficiency by actively setting an ON/OFF period of the light source consuming the maximum electric current in the optical input device according to a shutter ON/OFF period. Further, availability of the light source and its electric current is enhanced by controlling the light source for the shutter OFF period and by allowing the light source to be used as a source for the data transmission.
Abstract:
Provided is a touch sensor device including: at least one terminal connected to at least one contact pad; at least one common terminal; at least one light emitter connected between the common terminal and the terminal; and a touch sensor and light-emission controller unit connected to the common terminal and the terminal, and when a touch is sensed by the contact pad, controlling a corresponding light emitter to emit light.
Abstract:
An optical sensor module for an optical pointing device and a method of fabricating the same are provided. The optical sensor includes: a lead frame having a light receiving hole formed in a pad; an image sensor attached to the pad and detecting light emitted from a light source through the light receiving hole; and a molding member for integrally molding the lead frame and the image sensor. The method includes: forming a light receiving hole in a pad of a lead frame; attaching an image sensor to the pad; connecting the image sensor to a lead of the lead frame by bonding using a wire; molding the lead frame and the image sensor; and trimming the lead of the lead frame to a certain length and forming the lead.
Abstract:
Provided are a semiconductor device and a touch sensor device. The semiconductor device includes a die including a sense signal generator for sensing a touch signal to generate a sense signal; a conductive die-attach pad attached to the die to generate the touch signal; and a package for packaging the die and the die-attach pad, wherein the die-attach pad generates the touch signal depending on whether a touch object comes into contact with the package. The touch sensor device includes a plurality of semiconductor devices connected in a daisy-chain communication mode, wherein each of the semiconductor devices includes a die including a sense signal generator for sensing a touch signal to generate a sense signal; a conductive die-attach pad attached to the die to generate the touch signal; and a package for packaging the die and the die-attach pad, wherein the die-attach pad generates the touch signal depending on whether a touch object is brought into contact with the package. The semiconductor device enables the size and position of a touch pad to be known in advance during the fabrication of a die so that a sensitivity adjusting process can be simplified. Also, since the touch pad is included in a touch sensor, a system can be simply configured at low cost. Furthermore, the touch sensor device requires no additional sensitivity adjusting process and enables a plurality of touch sensor systems to be constructed at low cost by simply connecting a small number of electrical signals.
Abstract:
Provided are a touch sensor and a method of operating the same. The touch sensor includes: a pulse signal generator for generating a pulse signal of which pulse width is calibrated in response to a control code; a pulse signal transmitter for transmitting the pulse signal when a touch object is out of contact with a touch pad and stopping transmitting the pulse signal when the touch object is in contact with the touch pad; a pulse signal detector for detecting the pulse signal transmitted through the pulse signal transmitter; and a controller recognizing a non-contact state and adjusting the control code to calibrate the pulse width of the pulse signal when the pulse signal detector detects the pulse signal. In the above-described configuration, the contact of the touch object with the touch pad can be sensed more precisely, and the occurrence of a malfunction in the touch sensor due to changed operating conditions can be prevented. As a result, the operating reliability of the touch sensor can be enhanced.
Abstract:
Provided are an apparatus using a battery and a method of detecting a time to change/recharge the battery in the apparatus. The apparatus includes: a battery for applying a battery voltage; a function unit for receiving the battery voltage to perform an intrinsic operation and cutting off the battery voltage; a voltage divider for dividing the battery voltage to generate a divided voltage; an analog-to-digital converter (ADC) for receiving the battery voltage to convert the divided voltage into a digital voltage signal in response to a measurement control signal before and after a low-power mode is finished; and a controller for receiving the battery voltage to generate a low-power signal for entering the low-power mode, enabling the measurement control signal in response to the low-power signal before and after the low-power mode is finished, and informing a user of a time to change/recharge the battery by detecting the remaining power of the battery using the digital voltage signals generated before and after the low-power mode is finished.
Abstract:
An optical pointing device includes: an image obtaining part for continuously obtaining an image on a work surface as a sample image; a movement value calculator for comparing the sample image with the previously obtained image to calculate and output a movement value; a button selection signal generator for outputting a button selection signal corresponding to a specific reference pattern, when the sample image is the same as the specific reference pattern of a plurality of reference patterns; and a controller for providing the button selection signal and the movement value to a computing device when the button selection signal is transmitted from the button selection signal generator, and providing the movement value only to the computing device when the button selection signal is not transmitted from the button selection signal generator. Therefore, it is possible to recognize a plurality of specific patterns to generate button selection signals and replace mechanical selection buttons, thereby minimizing manufacturing cost and size of the optical pointing device. In addition, it is possible to readily change the number of button selection signals provided from the optical pointing device by changing the number of specific patterns.