Abstract:
A catalytic process for hydrogenating aromatic di- and polyamines with the aid of a selected catalyst system is provided, which comprises a mixture of a first heterogeneous catalyst and a second heterogeneous catalyst and a nitro compound (nitrate and/or nitrite salt). The first and second heterogeneous catalyst each independently comprise a metal selected from the group consisting of Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd and/or Pt and the metal selected for the second heterogeneous catalyst is different from the metal selected for the first heterogeneous catalyst. Hydrogenation of aromatic rings having two or more amino groups bound to the aromatic ring produces cycloaliphatic di- and polyamines, which are useful chemical intermediates, e.g., for further reaction with epoxides or isocyanates. The amino groups may also be converted to isocyanates via reaction with phosgene. The resulting cycloaliphatic di- and polyisocyanates may also be used as monomers for making polymers.
Abstract:
The invention relates to a method for producing functionalized polyoxymethylene block copolymers comprising the step of polymerizing formaldehyde in a reaction vessel in the presence of a catalyst, the polymerization of formaldehyde in addition taking place in the presence of a starter compound comprising at least 2 Zerewitinoff active H atoms, to obtain an intermediate product. The intermediate product obtained is subsequently reacted with a cyclic carboxylic acid ester or carbonic acid ester, thus obtaining a functionalized polyoxymethylene block copolymer. The invention further relates to functionalized polyoxymethylene block copolymers obtained by such a method and to the use of said copolymers.
Abstract:
The invention relates to a method for producing NCO-modified polyoxymethylene block copolymers comprising the step of polymerizing formaldehyde in a reaction vessel in the presence of a catalyst, the polymerization of formaldehyde in addition taking place in the presence of a starter compound comprising at least 2 Zerewitinoff active H atoms to obtain an intermediate product. The intermediate product obtained is reacted further with an isocyanate to obtain an NCO-modified polyoxymethylene block copolymer. The invention also relates to NCO-modified polyoxymethylene block copolymers obtained by a method of this type and to the use of said copolymers for producing polyurethane polymers.
Abstract:
A process for hydrogenating aromatic di- and polyamines is provided comprising the steps of reacting the aromatic amine with hydrogen in the presence of a catalytic system, wherein the catalytic system comprises a heterogeneous catalyst comprising a metal selected from the group consisting of Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd and/or Pt and a support, and wherein the catalyst system further comprises an organic nitro compound. Hydrogenation of aromatic di- and polyamines having two or more amino groups bound to the aromatic ring produces cycloaliphatic di- and polyamines, which are useful chemical intermediates, e.g., for further reaction with epoxides or isocyanates. The amino groups may also be converted to isocyanates via reaction with phosgene. The resulting cycloaliphatic di- and polyisocyanates may also be used as monomers for making polymers.
Abstract:
The invention relates to a method for producing non-alternating formaldehyde/CO2 copolymers, said method comprising the step of reacting formaldehyde or a compound that releases formaldehyde with carbon dioxide in the presence of a catalyst system. Said method is characterised in that the catalyst system comprises a Lewis acid component and a basic component, the Lewis acid component being at least temporarily coordinatively unsaturated under reaction conditions and the basic component having a pKb value of >=0.
Abstract translation:本发明涉及一种用于生产非交替甲醛/ CO 2共聚物的方法,所述方法包括在催化剂体系存在下使甲醛或释放甲醛的化合物与二氧化碳反应的步骤。 所述方法的特征在于,所述催化剂体系包含路易斯酸组分和碱性组分,所述路易斯酸组分在反应条件下至少暂时不协调地不饱和且pKb值> = 0的碱性组分。