Abstract:
Methods and systems are disclosed for controlling a particle analyzer based at least in part on a generated entrainment factor for a sample. The features include flowing a sample with a series of particles through the particle analyzer, detecting events and calculating an expected frequency of those events based on a distribution, such as a Poisson distribution, and measuring an observed frequency of particle events. An entrainment factor may be generated from a ratio of observed event frequency to expected event frequency. Further adjustment to the particle analyzer maybe performed based on the indicated entrainment factor such as adjusted sorting bias.
Abstract:
Methods and systems are disclosed for generating an entrainment factor in a flow cytometry sample. The methods comprise flowing a sample with a series of particles through the flow cytometer, detecting events and calculating an expected frequency of those events based on a distribution, such as a Poisson distribution, and measuring an observed frequency of particle events. An entrainment factor may be generated from a ratio of observed event frequency to expected event frequency. Further adjustment to the flow cytometer maybe performed based on the indicated entrainment factor such as adjusted sorting bias.
Abstract:
Methods and systems are disclosed for controlling a particle analyzer based at least in part on a generated entrainment factor for a sample. The features include flowing a sample with a series of particles through the particle analyzer, detecting events and calculating an expected frequency of those events based on a distribution, such as a Poisson distribution, and measuring an observed frequency of particle events. An entrainment factor may be generated from a ratio of observed event frequency to expected event frequency. Further adjustment to the particle analyzer maybe performed based on the indicated entrainment factor such as adjusted sorting bias.
Abstract:
Methods and systems are disclosed for generating an entrainment factor in a flow cytometry sample. The methods comprise flowing a sample with a series of particles through the flow cytometer, detecting events and calculating an expected frequency of those events based on a distribution, such as a Poisson distribution, and measuring an observed frequency of particle events. An entrainment factor may be generated from a ratio of observed event frequency to expected event frequency. Further adjustment to the flow cytometer maybe performed based on the indicated entrainment factor such as adjusted sorting bias.