Abstract:
A method of making a composite core can include configuring a plurality of mandrels to have a desired thermal expansion characteristic, placing a composite material around each mandrel, placing the plurality of mandrels in a tool, the tool being configured to constrain the plurality of mandrels as the mandrels experience a thermal expansion, heating the mandrels so that the mandrels thermally expand, thereby applying a pressure to the composite material during a cure cycle, and then cooling and separating the mandrels from the composite core. The mandrel is configured as an internal form for making a tube member of a composite core.
Abstract:
An aircraft includes a composite structure, comprising an outer skin formed from a composite material and having a first thickness, an inner skin formed from a composite material and having a second thickness, the second thickness being greater than the first thickness, and a core structure positioned between the inner and outer skins to increase bending stiffness of the composite structure. During use a structural load carried by the inner skin exceeds a structural load carried by the outer skin.
Abstract:
An airfoil member can have a root end, a tip end, a leading edge, and a trailing edge. The airfoil member can include an upper skin, a lower skin, and a composite core member having a plurality of cells, an upper surface network of the cells can be bonded to the upper skin, a lower surface network of the cells can be bonded to the lower skin. The composite core can have a septum layer embedded in the cells that form the composite core, the septum layer being configured to provide tailored characteristics of the airfoil member.
Abstract:
A method of wrapping a plurality of mandrels with a composite material can include rotating each mandrel at a rotational speed; translating each mandrel at a translation speed; positioning each mandrel back to back such that an aft face of a preceding mandrel is approximate to a forward face of a trailing mandrel; and sequentially wrapping each mandrel with the composite material in a helical orientation.
Abstract:
A method of wrapping a plurality of mandrels with a composite material can include rotating each mandrel at a rotational speed; translating each mandrel at a translation speed; positioning each mandrel back to back such that an aft face of a preceding mandrel is approximate to a forward face of a trailing mandrel; and sequentially wrapping each mandrel with the composite material in a helical orientation.