摘要:
A technique is disclosed that evaluates a network path between (i) a first node in a first subnetwork of endpoint nodes, such as IP phones, and (ii) a second node in a second subnetwork. A “ricochet” node in the network path evaluates the path by probing one or both subnetworks, where the ricochet node acts as relay for traffic packets being transmitted between the two subnetworks. A given relay has only to probe a single, representative node within a subnetwork at any given time in order to obtain performance data that is representative of the subnetwork overall. By probing the representative node, the relay is able to acquire an assessment of network conditions that is valid for the path between the relay and any endpoint in the subnetwork. As a result, the disclosed technique reduces the probing overhead when many endpoint nodes on a given subnetwork are simultaneously active and experiencing adverse network conditions.
摘要:
A method and apparatus are disclosed that seek to improve the quality of service that is experienced during the transmission of a stream of packets across one or more paths. In particular, a transmitting node encodes a source stream of data (e.g., audio, video, etc.) into one or more sub-streams, and distributes those sub-streams onto multiple network transmission paths. In accordance with the illustrative embodiment of the present invention, the transmitting node evaluates the quality of service of a first network path that fails to provide a quality-of-service guarantee. When the quality of service of the first network path becomes unsatisfactory, the coding of one or more sub-streams that are being transmitted on a second network path is adjusted. In other words, the coding on a second channel is adjusted in response to the changing conditions on a first channel.
摘要:
A method that seeks to provide a satisfactory quality of service for a stream of packets through a network. The illustrative embodiment of the present invention seeks to provide a satisfactory quality of service for a stream of packets by periodically or sporadically evaluating one or more alternative paths through the network and by sending the packets through a path with an acceptable quality of service. Normally, neither the source node nor any other node in a packet's path controls its route after it has left the node. In contrast, the illustrative embodiment of the present invention has the capability to affect the packet's path through the network by sending the packet to an intermediate or “ricochet” node in the network, which forwards the packet to the destination node. In effect, the source node can, if it deems appropriate, ricochet the packet off of the intermediate node rather than allowing the packet to take its normal direct path through the network.
摘要:
The present invention is a system and method for rapid network failure detection, identification and notification to internet users. It is particular applicable to VoIP applications where such real-time problem identification is particular valuable. It reduces failure detection time by coordinating the sending frequency of RTP and RTCP packets. These incoming packets are monitored and the failure to receive a predetermined number in a specified time window indicates that a network problem has occurred. This problem is then promptly communicated to users of the system.
摘要:
Techniques for performing rapid fault detection and recovery in communication networks are disclosed. For example, in one aspect of the invention, a technique for detecting one or more conditions in a communication network comprises the following steps/operations. One or more keep-alive packets are transmitted from a source node in the communication network to a destination node in the communication network over two or more paths between the source node and the destination node, wherein the two or more paths are at least partially disjoint. Upon receipt of the one or more keep-alive packets at the destination node via the two or more paths, at least one quality measure is computed at the destination node for each of the two or more paths, the at least one quality measure being indicative of one or more conditions in the communication network. While not limited thereto, the invention is particularly well-suited to Internet Protocol (IP) telephony networks, particularly those that provide Voice over IP (VoIP) applications.
摘要:
A wireless ad hoc network may be composed of several nodes that are coupled by communication links and configured dynamically. As the packet is transmitted from one node to the next node or hop in a predetermined route, a neighboring node, within the same transmission range, may hear the broadcasted transmission. If the neighboring node determines that a future hop on the route includes the neighboring node, the neighboring node may receive the packet at that time thereby skipping one or more hops along the route. The neighboring node may then forward the packet to the next node in the route.
摘要:
Optical bypass circuits are selected and created with a desired amount of traffic on each circuit to offload from the IP routers, the maximum possible amount of traffic. In a first phase, each node in a network independently determines the maximum number of optical bypass circuits, configured to their maximum capacity, to as many destinations, that could possibly originate at that node. The determination is made by aggregating traffic from a given traffic matrix. The optical bypass circuit transports traffic that originates at the node plus transient traffic that the node receives from other nodes. In the second phase, the node will eliminate an optical bypass circuit found in the first phase if any of its parent nodes created a necessarily longer optical bypass circuit to the same destination. In addition, if a descendent node has more aggregate traffic to fill more bypass circuits than the parent node, then the extra optical bypass circuits from the descendent node are also created.
摘要:
Optical bypass circuits are selected and created with a desired amount of traffic on each circuit to offload from the IP routers, the maximum possible amount of traffic. In a first phase, each node in a network independently determines the maximum number of optical bypass circuits, configured to their maximum capacity, to as many destinations, that could possibly originate at that node. The determination is made by aggregating traffic from a given traffic matrix. The optical bypass circuit transports traffic that originates at the node plus transient traffic that the node receives from other nodes. In the second phase, the node will eliminate an optical bypass circuit found in the first phase if any of its parent nodes created a necessarily longer optical bypass circuit to the same destination. In addition, if a descendent node has more aggregate traffic to fill more bypass circuits than the parent node, then the extra optical bypass circuits from the descendent node are also created.