摘要:
A thermo-anemometer-type fluid flow rate sensor design and a method for its operation that overcome the response time limitations of prior known fluid flow rate sensors is disclosed. The fluid flow rate sensor comprises a probe having a detection module adapted to change condition in response to the presence of the flow of the fluid, a control module that is electrically connected to the probe that monitors the condition of the detection module over time (e.g., a temperature), determines a rate of change of that condition over time, and generates an output that is indicative of the rate of flow of the fluid, and a I/O module connected to the control module to provide a means for communicating the output of the control module to another device or a user.
摘要:
A valve body defines an inlet, an outlet, a valving cavity disposed between the inlet and outlet and a valving surface between the inlet and the outlet. A valve is moveable to a position away from the valving surface for permitting flow from the inlet through the valving cavity to the outlet. The fluid flow rate sensor comprises a probe having a detection module adapted to change condition in response to the presence of the flow of the fluid, a control module that is electrically connected to the probe that monitors the condition of the detection module over time (e.g., a temperature), determines a rate of change of that condition over time, and generates an output that is indicative of the rate of flow of the fluid, and a I/O module connected to the control module and communicating the output of the control module to another device or a user.
摘要:
In many applications, where the level of a liquid needs to be monitored (and possibly controlled), it is not necessary to provide a continuous (analog) liquid level signal, but limit sensing to one (or two) discrete levels over a small level range. In this case, a ceramic substrate sensor with discrete thermistor/heater pairs provides necessary information to control the level of the fluid. Protection of the substrate from liquid (and potential contaminants) is accomplished by coating the surface with an inert glass (“glaze”) layer and/or polymer layer (e.g., “Parylene”). Packaging of the coated substrate is accomplished by protective base, epoxy, and slosh shield. Cost can be significantly reduced over a prior art multiple thermocouple based sensor design, since discrete electronic components are avoided or reduced. Also, the number of pins, and therefore electrical connections, can be significantly reduced.
摘要:
A bracket operable to support a temperature control device and a sensor probe at an external surface of a water tank for controlling and monitoring the water temperature of the tank. The bracket comprises a first receptacle, a second receptacle, and a coupling feature. The first receptacle is operable to receive the temperature control device. The second receptacle is operable to receive the sensor probe. The coupling feature is operable to attach the bracket at the external surface of the water tank.
摘要:
A spring clip is attached to a thermostat bottom wall for attaching the thermostat to tubing in heat exchange relationship. The spring clip has an opening that faces transversely of the thermostat longitudinal axis so that installation forces act in a direction that is more parallel to the bottom wall to avoid denting of the bottom wall. The spring clip has a flat mounting base attached to the thermostat bottom wall to spread forces over a large area of the bottom wall and to reinforce the bottom wall against deformation.
摘要:
In many applications, where the level of a liquid needs to be monitored (and possibly controlled), it is not necessary to provide a continuous (analog) liquid level signal, but limit sensing to one (or two) discrete levels over a small level range. In this case, a ceramic substrate sensor with discrete thermistor/heater pairs provides necessary information to control the level of the fluid. Protection of the substrate from liquid (and potential contaminants) is accomplished by coating the surface with an inert glass (“glaze”) layer and/or polymer layer (e.g., “Parylene”). Packaging of the coated substrate is accomplished by protective base, epoxy, and slosh shield. Cost can be significantly reduced over a prior art multiple thermocouple based sensor design, since discrete electronic components are avoided or reduced. Also, the number of pins, and therefore electrical connections, can be significantly reduced.
摘要:
A valve body defines an inlet, an outlet, a valving cavity disposed between the inlet and outlet and a valving surface between the inlet and the outlet. A valve is moveable to a position away from the valving surface for permitting flow from the inlet through the valving cavity to the outlet. The fluid flow rate sensor includes a probe having a detection module adapted to change condition in response to the presence of the flow of the fluid, a control module that is electrically connected to the probe that monitors the condition of the detection module over time (e.g., a temperature), determines a rate of change of that condition over time, and generates an output that is indicative of the rate of flow of the fluid, and a I/O module connected to the control module and communicating the output of the control module to another device or a user.
摘要:
A thermo-anemometer-type fluid flow rate sensor design and a method for its operation that overcome the response time limitations of prior known fluid flow rate sensors is disclosed. The fluid flow rate sensor includes a probe having a detection module adapted to change condition in response to the presence of the flow of the fluid, a control module that is electrically connected to the probe that monitors the condition of the detection module over time (e.g., a temperature), determines a rate of change of that condition over time, and generates an output that is indicative of the rate of flow of the fluid, and a I/O module connected to the control module to provide a means for communicating the output of the control module to another device or a user.