摘要:
A circuit configuration for a vehicle with electronic anti-lock control having circuits for individual control of the braking pressure variation in the wheel brakes of the wheels of one vehicle axle and for limiting the yawing moment owing to braking pressure differences. Circuits (6) detect the pressure reduction signals (PA1, PA2) individually per wheel and determine the pressure difference (DA12) from these signals. In the case of different friction values (.mu.-split situation), the mean pressure build-up gradient at the high-value wheel is varied as a function of the pressure difference (DA12) and the vehicle deceleration. At the time of the appearance of the peak yawing moment, namely directly before the low-value wheel will reenter the stable range, the braking pressure at the high-value wheel will be reduced by a value dependent on the vehicle deceleration and on the pressure difference.
摘要:
The invention relates to an integral brake for a motorbike. The integral brake is designed in such a way that if the footbrake lever or the handbrake lever is additionally activated after the footbrake lever or the handbrake lever is already activated, an optimum distribution—corresponding to the aimed-at increased deceleration of the motorbike—of the braking forces applied to the front and rear wheels is brought about without influencing the pressure prevailing in the handbrake cylinder.
摘要:
The invention relates to an integral brake for a motorbike. The integral brake is designed in such a way that if the footbrake lever or the handbrake lever is additionally activated after the footbrake lever or the handbrake lever is already activated, an optimum distribution—corresponding to the aimed-at increased deceleration of the motorbike—of the braking forces applied to the front and rear wheels is brought about without influencing the pressure prevailing in the handbrake cylinder.