摘要:
A method for producing aluminum strips for lithographic printing plate supports, wherein the aluminum strip is produced from a rolling ingot, which after optional homogenizing is hot-rolled to a thickness of 2 mm to 7 mm and cold-rolled to a final thickness of 0.15 mm to 0.5 mm provides for an aluminum strip having a thickness of 0.15 mm to 0.5 mm and a printing plate support produced from the aluminum strip.
摘要:
The invention relates to an aluminium alloy for the production of lithographic printing plate supports and also to an aluminium strip produced from the aluminium alloy, a process for the production of the aluminium strip and also its use for the production of lithographic printing plate supports. The object of providing an aluminium alloy as well as an aluminium strip from an aluminium alloy that permits the production of printing plate supports having improved bending-strength fatigue transverse to the rolling direction without adversely affecting the tensile strength values before and after the annealing process and while preserving the roughening properties, is achieved by the fact that the aluminium alloy contains the following alloy components in weight per cent: 0.4%
摘要:
A method for producing aluminum strips for lithographic printing plate supports, wherein the aluminum strip is produced from a rolling ingot, which after optional homogenizing is hot-rolled to a thickness of 2 mm to 7 mm and cold-rolled to a final thickness of 0.15 mm to 0.5 mm provides for an aluminum strip having a thickness of 0.15 mm to 0.5 mm and a printing plate support produced from the aluminum strip.
摘要:
A method for producing aluminum strips for lithographic printing plate supports, wherein the aluminum strip is produced from a rolling ingot, which after optional homogenizing is hot-rolled to a thickness of 2 mm to 7 mm and cold-rolled to a final thickness of 0.15 mm to 0.5 mm provides for an aluminum strip having a thickness of 0.15 mm to 0.5 mm and a printing plate support produced from the aluminum strip.
摘要:
The invention relates to an aluminium alloy for the production of lithographic printing plate supports and also to an aluminium strip produced from the aluminium alloy, a process for the production of the aluminium strip and also its use for the production of lithographic printing plate supports. The object of providing an aluminium alloy as well as an aluminium strip from an aluminium alloy that permits the production of printing plate supports having improved bending-strength fatigue transverse to the rolling direction without adversely affecting the tensile strength values before and after the annealing process and while preserving the roughening properties, is achieved by the fact that the aluminium alloy contains the following alloy components in weight percent: 0.4%
摘要:
An aluminum strip for lithographic printing plate supports, from which printing plate supports can be produced with an improved roughenability and at the same time improved mechanical properties, particularly after a burn-in process, is formed of an aluminum alloy which has the following proportions of alloy constituents in wt. %: 0.05%≦Mg≦0.3%, 0.008%≦Mn≦0.3%, 0.4%≦Fe≦1%, 0.05%≦Si≦0.5%, Cu≦0.04%, Ti≦0.04%, inevitable impurities individually max. 0.01%, in total max. 0.05% and remainder Al.
摘要:
An aluminum strip for lithographic printing plate supports, from which printing plate supports can be produced with an improved roughenability and at the same time improved mechanical properties, particularly after a burn-in process, is formed of an aluminum alloy which has the following proportions of alloy constituents in wt. %: 0.05%≦Mg≦0.3%, 0.008%≦Mn≦0.3%, 0.4%≦Fe≦1%, 0.05%≦Si≦0.5%, Cu≦0.04%, Ti≦0.04%, inevitable impurities individually max. 0.01%, in total max. 0.05% and remainder Al.
摘要:
A method of conditioning the surface of a work piece, in particular of a litho-strip or litho-sheet, consisting of an aluminum alloy enables an increase in manufacturing speed in surface roughening while maintaining a high quality of the electro-chemical grained surface of the work piece with relative low effort related to facility equipment. The method of conditioning comprises at least the step of degreasing the surface of the work piece with a degreasing medium, wherein the degreasing medium contains at least 1.5 to 3% by weight of a composite of 5-40% sodium tripolyphosphate, 3-10% sodium gluconate, 3-8% of a composite of non-ionic and anionic surfactants and optionally 0.5 to 70% soda, wherein sodium hydroxide is added to the degreasing medium such that the concentration of sodium hydroxide in the aqueous degreasing medium is 0.01 to 5% by weight.
摘要:
The invention relates to a strip consisting of an aluminium alloy for providing adhesive connections. In addition, the invention relates to a method for producing a strip having a one or two-sided surface structure which consists of an aluminium alloy, at least provided in certain areas and prepared for an adhesive connection, and also relates to a corresponding adhesive connection. The object of providing an aluminium alloy strip optimised for adhesive connections, which has optimised surface properties for ageing-resistant adhesive connections, on the one hand, and which can be cost-effectively produced in a way which is reliable in terms of the process, on the other hand, is achieved for a strip consisting of an aluminium alloy for providing adhesive connections by the strip at least in areas having a surface structure prepared for adhesive connections, wherein the surface structure has depressions which were produced using an electrochemical graining process.
摘要:
A strip for the production of a substrate for lithographic printing plates consisting of aluminum or an aluminum alloy and has at least to some extent a microcrystalline surface layer as a result of hot and/or cold roll passes. When analyzed in a two-dimensional microprobe analysis according to the mapping method of a surface region of the microcrystalline surface of the strip, the surface portion having an intensity ratio I/Ibulk(avg) of greater than 3 in the spectral range of the Kα1 line of the X-ray emission spectrum of oxygen of the measured microcrystalline surface layer is less than 10%, preferably less than 7%, wherein, during the two-dimensional microprobe analysis, an excitation voltage of 15kV, a beam current of 50 nA and a beam cross section of 1 μm is used with a step size of 16.75 μm for the electron beam.