摘要:
A system includes a sampling module, a counter module, and a frequency characteristic module. The sampling module samples radio frequency (RF) signals on a first channel for a first predetermined period and a second predetermined period that is subsequent to the first predetermined period. The counter module increments first and second counts when the samples collected during the first and second predetermined periods reverse polarity, respectively. The frequency characteristic module determines a frequency of the RF signal based on at least one of the first and the second counts and determines frequency variation of the RF signal based on the first and second counts.
摘要:
A system including a sampling module that generates samples of RF signals on a first channel during first, second, and third periods, which do not overlap. A difference module determines a first difference between i) a first count of polarity reversals during the first period and ii) a second count of polarity reversals during the second period; a second difference between i) the second count and ii) a third count of polarity reversals during the third period; and a third difference between the first and second differences. A third module determines a frequency of the RF signals based on at least one of the first and second counts, determines a frequency variation of the RF signals based on the first and second counts, and identifies a radar type of the RF signals based on at least one of the third difference and the frequency variation.
摘要:
A system includes a sampling module, a counter module, and a frequency characteristic module. The sampling module samples radio frequency (RF) signals on a first channel for a first predetermined period and a second predetermined period that is subsequent to the first predetermined period. The counter module increments first and second counts when the samples collected during the first and second predetermined periods reverse polarity, respectively. The frequency characteristic module determines a frequency of the RF signal based on at least one of the first and the second counts and determines frequency variation of the RF signal based on the first and second counts.
摘要:
A system includes a sampling module, a counter module, and a frequency characteristic module. The sampling module samples radio frequency (RF) signals on a first channel for a first predetermined period and a second predetermined period that is subsequent to the first predetermined period. The counter module increments first and second counts when the samples collected during the first and second predetermined periods reverse polarity, respectively. The frequency characteristic module determines a frequency of the RF signal based on at least one of the first and the second counts and determines frequency variation of the RF signal based on the first and second counts.
摘要:
A system includes an encoding module, a symbol selection module, a subcarrier selection module, and a mapping module. The encoding module receives symbols for transmission over K subcarriers and T antennas, encodes the symbols using a space time code, and generates space time coded (STC) versions of the symbols, where K and T are integers greater than 1. The symbol selection module selects T adjacent ones of the symbols and selects STC versions of the T adjacent ones of the symbols. The subcarrier selection module selects one of the K subcarriers for transmitting the T adjacent ones of the symbols and the STC versions of the T adjacent ones of the symbols. The mapping module maps the T adjacent ones of the symbols onto the T antennas for transmission over the selected one of the K subcarriers, respectively, and maps the STC versions of the T adjacent ones of the symbols onto the T antennas for transmission over the selected one of the K subcarriers.
摘要:
Systems and methods are provided for determining a data value for a bit of interest in a received data signal. A closest 0-bit symbol candidate is selected from a plurality of 0-bit symbol candidates using a symbol selection distance approximation. A closest 1-bit symbol candidate is selected from a plurality of 1-bit symbol candidates using the symbol selection distance approximation. A 0-bit distance between the received data signal and the selected 0-bit symbol candidate is determined, and a 1-bit distance between the received data signal and the selected 1-bit symbol candidate is determined. A log likelihood ratio is calculated for the bit of interest using the determined 0-bit distance and the determined 1-bit distance.
摘要:
A system includes an encoding module, a symbol selection module, a subcarrier selection module, and a mapping module. The encoding module receives symbols for transmission over K subcarriers and T antennas, encodes the symbols using a space time code, and generates space time coded (STC) versions of the symbols, where K and T are integers greater than 1. The symbol selection module selects T adjacent ones of the symbols and selects STC versions of the T adjacent ones of the symbols. The subcarrier selection module selects one of the K subcarriers for transmitting the T adjacent ones of the symbols and the STC versions of the T adjacent ones of the symbols. The mapping module maps the T adjacent ones of the symbols onto the T antennas for transmission over the selected one of the K subcarriers, respectively, and maps the STC versions of the T adjacent ones of the symbols onto the T antennas for transmission over the selected one of the K subcarriers.
摘要:
In a method for synchronizing a receiver to a synchronous signal, in a signal having been processed based on an automatic gain control (AGC) with a varying gain, a symbol is detected. An estimated beginning of a subsequent frame is determined based on the detected symbol. A gain of the AGC is fixed for a period during which the estimated start of the subsequent frame is processed by the AGC. A transform of the signal is analyzed to determine if the estimated start of the subsequent frame corresponds to an actual start of the subsequent frame. If the estimated start of the subsequent frame does not corresponds to the actual start of the subsequent frame, the gain of the AGC is allowed to resume varying and, a further symbol in the signal is detected, the signal having been processed based on the varying gain of the AGC.
摘要:
In a wireless communication system wherein communication devices exchange information utilizing data units that conform to a first format, a beamforming training (BFT) data unit that conforms to a second format is transmitted, wherein a length of the BFT data unit is shorter than lengths supported by the first format, wherein the BFT data unit is for transmitting PHY beamforming training information. Information to indicate the BFT data unit conforms to the second format is transmitted to a receiving device. The BFT data unit is generated according to the second format, wherein the BFT data unit includes BFT information elements. The BFT data unit is then transmitted to the receiving device.
摘要:
Time-reversal filtering may be used to temporally focus a signal to be transmitted. Power can be reduced at the transmitter so that the temporally focused signal is within spectral mask requirements. In one embodiment, the effect of the time-reversal filter on the power spectral density for a particular transmitted signal can be calculated and the predicted power spectral density can be compared to the permitted spectral mask to identify violations, if any, of the spectral mask. The transmitter power can then be reduced by the amount of the violation. In another embodiment, a set of different time-reversal filters that meet the spectral mask requirements can be provided in advance, and the most appropriate filter—e.g., the one with the best signal-to-noise ratio for the particular signal—can be chosen from the set of filters.