摘要:
An optical fiber laser, according to the present invention, has an optical fiber including a core to which a rare earth element is added and a clad disposed around the core, and also has an excitation light source for emitting excitation light incident on a side of the optical fiber. The optical fiber has a corrugated shape on the outer circumference of the clad along the longitudinal direction thereof; and the optical fiber is wound in a spiral form and is bundled in such a way that adjacent sides of the clad are brought into contact with one another.
摘要:
The optical fiber 1 for an optical fiber laser is provided with a rare earth element doped core 2 doped with a rare earth element, and a cladding 3 formed at an outer periphery of the rare earth element doped core 2. In the optical fiber 1 for an optical fiber laser, the rare earth element doped core 2 is divided into a plurality of core regions 2a, 2b, . . . , 2n−1, 2n along a longitudinal direction of the optical fiber 1 and dopant concentrations of the rare earth element in respective core regions 2a, 2b, . . . , 2n−1, 2n are different from each other, in order to flatten a temperature distribution of the optical fiber 1 along the longitudinal direction.
摘要:
The optical fiber 1 for an optical fiber laser is provided with a rare earth element doped core 2 doped with a rare earth element, a cladding 3 formed at an outer periphery of the rare earth element doped core 2, a core vicinity part 3′ of the cladding 3 provided in vicinity of the rare earth element doped core 2 being doped with a refractive index increasing agent which reduces a relative refractive index difference between the core vicinity part 3′ and the rare earth element doped core 2 to be 0.1% or less.
摘要:
A cladding is provided at an outer periphery of a solid-core doped with rare earth ions, and a metal layer is formed to be adjacent to the cladding to provide an optical fiber for a fiber laser device. The metal layer having an inner metal layer and an outer metal layer is disposed along an entire length of the optical fiber for a fiber laser device. An exciting light is incident to the optical fiber for a fiber laser device, and the exciting light is reflection-excited to emit a high power laser oscillation light. A monitoring current is constantly flown into the metal layer. When the disconnection of the optical fiber for a fiber laser device is detected based on the monitoring current, the energization of the optical fiber for a fiber laser device is stopped.
摘要:
An optical fiber laser, according to the present invention, has an optical fiber including a core to which a rare earth element is added and a clad disposed around the core, and also has an excitation light source for emitting excitation light incident on a side of the optical fiber. The optical fiber has a corrugated shape on the outer circumference of the clad along the longitudinal direction thereof; and the optical fiber is wound in a spiral form and is bundled in such a way that adjacent sides of the clad are brought into contact with one another.
摘要:
An optical fiber includes a rare-earth element-added core for serving as a gain medium, and a cladding formed on a periphery of the core. Pump light propagated through the cladding is coupled into the core. The cladding is in an undulation shape in the longitudinal direction of the cladding. The undulation shape of the cladding is formed according to a grating period at which the pump light is totally reflected and propagated in the cladding. The core includes an undulation shape in a longitudinal direction of the core. The cladding includes an undulating inner cladding, and an outer cladding provided on a periphery of the inner cladding. The core and/or the cladding is circular or abnormally circular in its transverse cross section.
摘要:
A cladding is provided at an outer periphery of a solid-core doped with rare earth ions, and a metal layer is formed to be adjacent to the cladding to provide an optical fiber for a fiber laser device. The metal layer having an inner metal layer and an outer metal layer is disposed along an entire length of the optical fiber for a fiber laser device. An exciting light is incident to the optical fiber for a fiber laser device, and the exciting light is reflection-excited to emit a high power laser oscillation light. A monitoring current is constantly flown into the metal layer. When the disconnection of the optical fiber for a fiber laser device is detected based on the monitoring current, the energization of the optical fiber for a fiber laser device is stopped.
摘要:
The optical fiber 1 for an optical fiber laser is provided with a rare earth element doped core 2 doped with a rare earth element, and a cladding 3 formed at an outer periphery of the rare earth element doped core 2. In the optical fiber 1 for an optical fiber laser, the rare earth element doped core 2 is divided into a plurality of core regions 2a, 2b, . . . , 2n−1, 2n along a longitudinal direction of the optical fiber 1 and dopant concentrations of the rare earth element in respective core regions 2a, 2b, . . . , 2n−1, 2n are different from each other, in order to flatten a temperature distribution of the optical fiber 1 along the longitudinal direction.
摘要:
A plurality of light emitting elements 11 are arranged in parallel with a constant pitch to provide a semiconductor laser bar 10. An optical waveguide 20 has a core part 21 for guiding a light emitted from each of the light emitting elements 11 and a cladding part 22 formed around the core part 21. An optical fiber 30 has a core 31 and a cladding 32 formed around the core 31 for confining the light to the core 31. The optical waveguide is bonded to a side surface of the optical fiber 30, and the light emitted from the semiconductor laser bar 10 is inputted to a side surface of the core 31 of the optical fiber 30 via the core part 21 of the optical waveguide 20.
摘要:
A composite cable that is able to prevent both the unfastening of the cable end from the connector and the occurrence of the bending distortion of the optical fiber, to both of which the expansion and shrinkage of the overall sheath is responsible, is provided. The composite cable comprises a stranded wire that is a strand of a plurality of insulated conductors each of which is a conductor with insulation covering thereon, an optical fiber ribbon that has a plurality of optical fibers parallelly-arranged in a row, and an overall sheath that covers the stranded wire and the optical fiber ribbon in a bundle, wherein the composite cable has a deterrent positioned on outer side of the stranded wire and the optical fiber ribbon parallelly-arranged in a row along the width direction of the overall sheath for deterring expansion and shrinkage of the overall sheath. Further, the composite cable has a bonding jacket between the deterrent and the overall sheath for making the deterrent adhere to the overall sheath; alternatively, the deterrent has a patterned indented shape on the surface thereof for making the deterrent adhere to the overall sheath.