摘要:
A biocompatible membrane comprised of alginate and hyaluronate. The membrane may be used to prevent unwanted scarring after surgery. The tissue adherence and the rate of bioresorption of the membrane may be modified through an external stimulus comprising a sequestering agent and a viscosity modifier.
摘要:
A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
摘要:
A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
摘要:
A biocompatible membrane comprised of alginate and hyaluronate. The membrane may be used to prevent unwanted scarring after surgery. The tissue adherence and the rate of bioresorption of the membrane may be modified through an external stimulus comprising a sequestering agent and a viscosity modifier.
摘要:
A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
摘要:
A biocompatible membrane comprised of alginate and hyaluronate. The membrane may be used to prevent unwanted scarring after surgery. The tissue adherence and the rate of bioresorption of the membrane may be modified through an external stimulus comprising a sequestering agent and a viscosity modifier.
摘要:
A biocompatible membrane comprised of alginate and hyaluronate. The membrane may be used to prevent unwanted scarring after surgery. The tissue adherence and the rate of bioresorption of the membrane may be modified through an external stimulus comprising a sequestering agent and a viscosity modifier.
摘要:
A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.
摘要:
A biocompatible membrane comprised of alginate and hyaluronate. The membrane may be used to prevent unwanted scarring after surgery. The tissue adherence and the rate of bioresorption of the membrane may be modified through an external stimulus comprising a sequestering agent and a viscosity modifier.
摘要:
A non-synthetic, hydrophilic, biodegradable, biocompatible polysaccharide based non-toxic anti-adhesion hydrogel barrier is disclosed herein. The barrier of the present invention is formed by constructing a unique interpenetrating, crosslinked network with a unique porosity. Furthermore, the barrier of the present invention is comprised of tunable biopolymers for controllable mechanical robustness and degradation. The barrier of the present invention effectively reduces unwanted adhesions using non-synthetic components.