Abstract:
A variable geometry turbine turbocharger (1) includes a gear driven adjustment ring actuator mechanism (300) supported within a housing (16) via a resilient mount (70) disposed between the mechanism (300) and housing (16). The gear driven adjustment ring actuator mechanism (300) rotates an adjustment ring (350), which in turn adjusts the position of the vanes (30) of the variable geometry turbine (2). The resilient mount (70) accommodates the heat-related expansion and contraction of the gear driven adjustment ring actuator mechanism (300).
Abstract:
A variable geometry turbine turbocharger (1) includes a gear driven adjustment ring actuator mechanism (300) supported within a housing (16) via a resilient mount (70) disposed between the mechanism (300) and housing (16). The gear driven adjustment ring actuator mechanism (300) rotates an adjustment ring (350), which in turn adjusts the position of the vanes (30) of the variable geometry turbine (2). The resilient mount (70) accommodates the heat-related expansion and contraction of the gear driven adjustment ring actuator mechanism (300).
Abstract:
The present disclosure is directed to a waste heat recovery system used in conjunction with a power source system. A pump may pressurize a working fluid to a set pressure threshold and feed the working fluid through a fluid flow path. An evaporator and a condenser may each connect to the fluid flow path. Connected to each the evaporator and the condenser may be a turbine able to receive the working fluid when the working fluid is above the set pressure threshold and a predetermined thermal threshold. An electric machine having a motor mode or a generator mode may then attach to the turbine. Attached to the other end of the turbine may be a shaft coupling also attached to the pump. The pump may be powered by the electric machine operating in a motor mode through the shaft coupling to provide pressure to the waste heat recovery system.
Abstract:
The present disclosure is directed to a waste heat recovery system used in conjunction with a power source system. A pump may pressurize a working fluid to a set pressure threshold and feed the working fluid through a fluid flow path. An evaporator and a condenser may each connect to the fluid flow path. Connected to each the evaporator and the condenser may be a turbine able to receive the working fluid when the working fluid is above the set pressure threshold and a predetermined thermal threshold. An electric machine having a motor mode or a generator mode may then attach to the turbine. Attached to the other end of the turbine may be a shaft coupling also attached to the pump. The pump may be powered by the electric machine operating in a motor mode through the shaft coupling to provide pressure to the waste heat recovery system.