Abstract:
Described herein are endoscopic plicators passed transorally into the stomach and used to plicate stomach tissue by engaging tissue from inside of the stomach and drawing it inwardly. In the disclosed embodiments, the tissue is drawn inwardly into a vacuum chamber, causing sections of serosal tissue on the exterior of the stomach to be positioned facing one another. The disclosed plicators allow the opposed sections of tissue to be moved into contact with one another, and preferably deliver sutures, staples or other means for maintaining contact between the tissue sections at least until serosal bonds form between them. Each of these steps may be performed wholly from the inside of the stomach and thus can eliminate the need for any surgical or laparoscopic intervention. After one or more plications is formed, medical devices may be coupled to the plication(s) for retention within the stomach.
Abstract:
Devices and methods for acquiring and fastening tissues folds within an internal organ, such as the stomach, and for applying the methods and devices to producing reductions in organ volume or repair of bariatric procedures, are disclosed. An exemplary method for forming a continuous laterally extending tissue fold involves forming a succession of laterally extending folds having adjacent overlapping fold portions. One exemplary tissue-acquisition device has an open-end roller-and-arm structure that allows individual tissue folds to be formed and fastened, then advanced to an adjacent region within the stomach, for capture of a new fold that will form an extension of the existing fold(s).
Abstract:
Described herein are endoscopic plicators passed transorally into the stomach and used to plicate stomach tissue by engaging tissue from inside of the stomach and drawing it inwardly. In the disclosed embodiments, the tissue is drawn inwardly into a vacuum chamber, causing sections of serosal tissue on the exterior of the stomach to be positioned facing one another. The disclosed plicators allow the opposed sections of tissue to be moved into contact with one another, and preferably deliver sutures, staples or other means for maintaining contact between the tissue sections at least until serosal bonds form between them. Each of these steps may be performed wholly from the inside of the stomach and thus can eliminate the need for any surgical or laparoscopic intervention. After one or more plications is formed, medical devices may be coupled to the plication(s) for retention within the stomach.
Abstract:
The present application describes an implant system useable for positioning an implant device such as a device useful for restricting passage of ingested food into the stomach. In one embodiment, the disclosed system includes a plurality of anchors that may be coupled to tissue within the stomach, or to a tissue tunnel formed by plicating stomach wall tissue. The anchor includes a loop. During use, the implant device is inserted through the loop and expanded such that it retains its position within the loop until removed. Instruments for implanting and explanting the implant device are also described.
Abstract:
This application describes an overtube device that gives diagnostic and/or therapeutic access to body cavities using natural orifices of the body. The overtube includes an elongate flexible body having a distal portion deflectable in response to activation of a control cable. Proximal features of the overtube include an insufflations port and seals for minimizing loss of insufflations pressure around the shafts of instruments passed through the tube. In some embodiments, retractor elements are including on the distal portion of the overtube.