摘要:
An apparatus and a method for controlling a paint canister filling operation includes a controller for determining a total volume of paint required for a painting operation, calculating a required piston position and actuating a motor to move a piston in the interior of the canister to the required position. The controller opens a supply valve connected between the canister interior and a paint supply to fill the canister and monitors the torque applied by the motor to maintain the piston at the required position. When the torque exceeds a set point representing the torque value required to maintain the piston at the required position when the total required paint is in the canister interior, the controller closes the supply valve.
摘要:
A robot assembly (10) for opening and holding an automotive door including a base (12) movably mounted to a platform (14). An inner robot arm (18) is pivotally mounted to the base. An outer robot arm (20) is pivotally mounted to the inner arm (18). A tool arm (22) is pivotally mounted to the outer robot arm (20). The tool arm (22) includes a shaft (58) presenting a second tool arm axis (A.sub.4) for rotation about the second tool arm axis (A.sub.4). A sphere (90), presenting first, second and third sphere axes (A.sub.5,A.sub.6,A.sub.7), is mounted to the distal end of the shaft (58) for rotatably supporting a magnet tool (118). A pin (104) extends from the sphere (90) for preventing the rotation of the tool (118) about the first sphere axis (A.sub.) which is parallel to the second tool arm axis (A.sub.4). The tool (118) is positioned in a home position relative to the second tool arm axis (A.sub.4) by a biasing spring (70) operatively connected to the shaft (58). The tool (118) is positioned in a normal position relative to the second sphere axis (A.sub.6) by a pair of biasing springs (110) engaged with the pin (104). The robot arms (18, 20) maneuver the tool (118) such that the tool (118) engages and opens the door. As the tool (118) engages and opens the door, the tool (118) rotates about the second tool arm axis (A.sub.4), the second sphere axis (As, and the third sphere axis (A.sub.7). The sphere (90) is sealed by a sealing means (112, 114) which accommodates for the rotation of the tool (118). A proximity sensor (74) detects if the tool (118) has hold of the door. The tool arm (22) includes a clutch plate (24) for allowing the tool arm (22) to breakaway from the outer robot arm (20) in the event the tool (118) unexpectedly crashes.
摘要:
A line management system for a robot includes a flexible line, a structure clamp coupled to a first end of the flexible line to attach the flexible line to a support structure of the robot, an arm clamp coupled to the second end of the flexible line to attach the flexible line to an outer arm of the robot, a coupling device moveably coupled to the robot structure, wherein the flexible line is attached to the coupling device at an intermediate point along a length thereof.
摘要:
A take-up device for automatically taking-up slack in a control cable. The take-up device includes a cable mount mounted to one end of a control cable. A compression spring engages the cable mount and continuously biases the cable mount to a slack take-up position to tension the control cable. In the preferred embodiment, the cable mount is biased so that one end of the control cable moves toward the other end of the control cable in order tension the control cable. A threaded tube engages the cable mount to retain the cable mount in the slack take-up position. The take-up device is characterized by a torsion spring automatically moving the threaded tube into engagement with the cable mount as the compression spring biases the cable mount to the slack take-up position thereby automatically preventing the cable mount from returning to a slackened position.
摘要:
A laser robot system including an offset robot. The system includes a laser beam generator for generating a laser beam. The robot includes a pedestal having a vertical first axis and a hollow base support on the pedestal for rotation about the first axis and for receiving the laser beam along the first axis. A single computer-based controller controls the laser beam generator, a drive system of the robot and an air source which is in fluid communication with the base of the robot. The air source pressurizes the laser beam path through the robot, thereby preventing contamination of the beam path. A hollow arm support in the form of a swing block is laterally supported on the base for rotation relative to the base about a horizontal second axis which intersects the first axis. A robot arm is elongated along a third axis which is obliquely angled to and intersects the second axis. The robot arm is laterally supported on the swing block for pivotal rotation therewith relative to the base about the second axis. First and second mirrors are supported within the base and the arm, respectively, so that a laser beam traveling along the first axis is deflected to then travel along the second axis and then deflected to travel along the third axis and through an optical focusing assembly on the arm. The first mirror is reversible so that the base can receive the laser beam from opposite directions.
摘要:
A painting robot outer arm includes a non-conductive housing mounting a color changer on the outside and a paint canister on the inside connected by an isolating paint transfer line. The paint canister is releasably attached to a piston ram and drive motor by a quick disconnect coupling. The paint supply is isolated from the applied high voltage by cleaning and drying the transfer line. The rate of filling of the canister can be controlled in response to sensed torque applied by a drive motor moving a piston in the paint canister.
摘要:
A waterborne paint bell applicator is movable to and from a docking position and includes a paint receptacle connected to a paint canister. A paint filling station has a plurality of paint injectors each connected to a different color paint supply and being movable to the docking position for engagement with the paint receptacle for filling the paint canister with paint. A servomotor drives a piston in the canister. A paint valve in each injector is prevented from opening when the bell applicator is not present at the docking position
摘要:
A painting robot outer arm includes a non-conductive housing mounting a color changer on the outside and a paint canister on the inside connected by an isolating paint transfer line. The paint canister is releasably attached to a piston ram and drive motor by a quick disconnect coupling. The paint supply is isolated from the applied high voltage by cleaning and drying the transfer line. The rate of filling of the canister can be controlled in response to sensed torque applied by a drive motor moving a piston in the paint canister.
摘要:
An intelligent power assisted manual manipulator controllable by operator inputs from an operator for moving an object is provided. The manipulator includes a movable base supporting a lift mechanism for moving the object. The manipulator also includes at least one servomotor for actuating at least one of the movable base and the lift mechanism for moving the object. An operator control mechanism for receiving the operator inputs is supported on the lift mechanism. A plurality of force sensors are disposed between the operator control mechanism and the lift mechanism for sensing said operator inputs and actuating at least one of the at least one servomotor. The movable base includes an overhead rail defining a generally horizontal first axis and a carriage supported on the overhead rail and movable along the first axis. The lift mechanism includes a turret assembly supported on the carriage having a generally vertical second axis, and a generally horizontal third axis. The carriage has first and second elongated portions in opposing generally horizontal planes and third and fourth elongated portions in generally vertical planes. Oversize rollers on unhardened ways support the carriage. A main arm extends from the turret with the main arm being rotatable about the second and third axes. An attachment interface is supported by the main arm and adapted to support the object, the attachment interface having a fifth axis about which the attachment interface is rotatable. The manipulator is also adapted for lifting different objects having different weights. The arm has a portion opposite the pivotal connection adapted to support the object. A gravity balancer mechanism is adapted to support the different weights, and a motion servomotor is adapted to produce a movement of the arm by drivingly rotating the arm about the axis.
摘要:
A robot wrist and spray head applicator assembly (10) comprising a base (18) presenting an arm axis (A) and supported on a robot arm (16). A housing (22) is supported by the base (18) for rotation about the arm axis (A). A tool support member (30) has a tool axis (B) and is rotatably supported by the housing (22) for rotation about a transverse axis (C) which is disposed at an acute angle relative to the arm axis (A) for movement between a straight ahead position in which the tool axis (B) is generally parallel to the arm axis (A) and a transverse position in which the tool axis (B) is transverse to the arm axis (A). A spray head (38, 38') is rotatably supported by the tool support member (30) for rotation about the tool axis (B) and the spray head (38, 38') and includes a needle valve (44) movable between open and closed positions for controlling flow. The assembly is characterized by a motion transmitting core element (46) extending from the base (18) for rectilinear movement for moving the needle valve (44) with the core element (46) being flexible for bending through a curved path between the base (18) and the spray head (38, 38') as the housing (22) and/or the tool support member (30) are rotated relative to the base (18) and as the spray head (38, 38') rotates. In addition, the core element (46) is connected to a piston (56) supported by a fluid coupling member (54). The fluid coupling member (54) presents a fluid inlet (60) for actuating the piston (56), a paint connection (68) for receiving paint and an air inlet (76) for receiving spraying air and a bracket (86) supports the coupling member (54) on the robot arm (16) in spaced relationship to the base (18).