METHOD FOR THE IN VIVO SYNTHESIS OF 4-HYDROXYMETHYLFURFURAL AND DERIVATIVES THEREOF

    公开(公告)号:US20210238639A1

    公开(公告)日:2021-08-05

    申请号:US17219792

    申请日:2021-03-31

    Applicant: Braskem S.A.

    Abstract: The present disclosure provides recombinant microorganisms and methods for the production of 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA from a carbon source. The method provides for engineered microorganisms that express endogenous and/or exogenous nucleic acid molecules that catalyze the conversion of a carbon source into 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA. The disclosure further provides methods of producing polymers derived from 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA.

    METHOD FOR THE IN VIVO SYNTHESIS OF 4-HYDROXYMETHYLFURFURAL AND DERIVATIVES THEREOF

    公开(公告)号:US20220298535A1

    公开(公告)日:2022-09-22

    申请号:US17750293

    申请日:2022-05-20

    Applicant: Braskem S.A.

    Abstract: The present disclosure provides recombinant microorganisms and methods for the production of 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA from a carbon source. The method provides for engineered microorganisms that express endogenous and/or exogenous nucleic acid molecules that catalyze the conversion of a carbon source into 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA. The disclosure further provides methods of producing polymers derived from 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA.

    METHOD FOR THE IN VIVO SYNTHESIS OF 4-HYDROXYMETHYLFURFURAL AND DERIVATIVES THEREOF

    公开(公告)号:US20210222217A1

    公开(公告)日:2021-07-22

    申请号:US17163838

    申请日:2021-02-01

    Applicant: Braskem S.A.

    Abstract: The present disclosure provides recombinant microorganisms and methods for the production of 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA from a carbon source. The method provides for engineered microorganisms that express endogenous and/or exogenous nucleic acid molecules that catalyze the conversion of a carbon source into 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA. The disclosure further provides methods of producing polymers derived from 4-IMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA.

    METHOD FOR THE IN VIVO SYNTHESIS OF 4-HYDROXYMETHYLFURFURAL AND DERIVATIVES THEREOF

    公开(公告)号:US20200277639A1

    公开(公告)日:2020-09-03

    申请号:US16806728

    申请日:2020-03-02

    Applicant: Braskem S.A.

    Abstract: The present disclosure provides recombinant microorganisms and methods for the production of 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA from a carbon source. The method provides for engineered microorganisms that express endogenous and/or exogenous nucleic acid molecules that catalyze the conversion of a carbon source into 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA. The disclosure further provides methods of producing polymers derived from 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA.

    METHOD FOR THE IN VIVO SYNTHESIS OF 4-HYDROXYMETHYLFURFURAL AND DERIVATIVES THEREOF

    公开(公告)号:US20220090153A1

    公开(公告)日:2022-03-24

    申请号:US17545616

    申请日:2021-12-08

    Applicant: Braskem S.A.

    Abstract: The present disclosure provides recombinant microorganisms and methods for the production of 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA from a carbon source. The method provides for engineered microorganisms that express endogenous and/or exogenous nucleic acid molecules that catalyze the conversion of a carbon source into 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA. The disclosure further provides methods of producing polymers derived from 4-HMF, 2,4-furandimethanol, furan-2,4-dicarbaldehyde, 4-(hydroxymethyl)furoic acid, 2-formylfuran-4-carboxylate, 4-formylfuran-2-carboxylate, and/or 2,4-FDCA.

    MICROORGANISMS AND METHODS FOR THE PRODUCTION OF GLYCOLIC ACID AND GLYCINE VIA REVERSE GLYOXYLATE SHUNT

    公开(公告)号:US20200263210A1

    公开(公告)日:2020-08-20

    申请号:US16791556

    申请日:2020-02-14

    Applicant: Braskem S.A.

    Abstract: The present invention provides biochemical pathways, glyoxylate producing recombinant microorganisms, and methods for the production and yield improvement of glycolic acid and/or glycine via a reverse glyoxylate shunt. The reverse glyoxylate shunt comprises an enzyme that catalyzes the carboxylation of phosphoenol pyruvate (PEP) to oxaloacetate (OAA), or an enzyme that catalyzes the carboxylation of pyruvate to oxaloacetate (OAA) or an enzyme that catalyzes the carboxylation of pyruvate to malate or a combination of any of the previous reactions; an enzyme that catalyzes the conversion of malate to malyl-CoA; an enzyme that catalyzes the conversion of malyl-CoA to glyoxylate and acetyl-CoA; and optionally an enzyme that catalyzes the conversion of oxaloacetate (OAA) to malate. Glyoxylate is reduced to produce glycolate. Alternatively, glyoxylate is converted to glycine. The reverse glyoxylate shunt pathway of the present invention can be utilized synergistically with other glycolic acid and/or glycine producing pathways to increase product yield.

Patent Agency Ranking