MICROORGANISMS AND METHODS FOR THE PRODUCTION OF OXYGENATED COMPOUNDS FROM HEXOSES

    公开(公告)号:US20200283806A1

    公开(公告)日:2020-09-10

    申请号:US16796417

    申请日:2020-02-20

    Applicant: Braskem S.A.

    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG), or optionally MEG and one or more co-product, from one or more hexose feedstock. The present application also relates to recombinant microorganisms useful in the biosynthesis of glycolic acid (GA), or optionally GA and one or more co-product, from one or more hexose feedstock. The present application relates to recombinant microorganisms useful in the biosynthesis of xylitol, or optionally xylitol and one or more co-product, from one or more hexose feedstock. Also provided are methods of producing MEG (or GA or xylitol), or optionally MEG (or GA or xylitol) and one or more co-product, from one or more hexose feedstock using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or the products MEG (or GA or xylitol), or optionally MEG (or GA or xylitol) and one or more co-product.

    PRODUCTION OF ETHANOL WITH ONE OR MORE CO-PRODUCTS IN YEAST

    公开(公告)号:US20250075235A1

    公开(公告)日:2025-03-06

    申请号:US18952535

    申请日:2024-11-19

    Applicant: Braskem S.A.

    Abstract: The disclosure provides processes for the production of ethanol and one or more co-products from a fermentable carbon source. The ethanol and one or more co-products are produced in an ethanol-producing yeast modified to further produce the one or more co-products. The processes involve contacting a fermentable carbon source with the modified yeast in a fermentation medium, fermenting the yeast in the fermentation medium such that the yeast produces ethanol and the one or more co-products from the fermentable carbon source, and isolating the ethanol and the one or more co-products. The modified yeast is an ethanol-producing yeast that produces ethanol in a greater concentration than the one or more co-products. Additionally, the disclosure provides the modified yeast disclosed herein.

    MICROORGANISMS AND METHODS FOR THE PRODUCTION OF OXYGENATED COMPOUNDS FROM HEXOSES

    公开(公告)号:US20240392329A1

    公开(公告)日:2024-11-28

    申请号:US18737619

    申请日:2024-06-07

    Applicant: Braskem S.A.

    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG), or optionally MEG and one or more co-product, from one or more hexose feedstock. The present application also relates to recombinant microorganisms useful in the biosynthesis of glycolic acid (GA), or optionally GA and one or more co-product, from one or more hexose feedstock. The present application relates to recombinant microorganisms useful in the biosynthesis of xylitol, or optionally xylitol and one or more co-product, from one or more hexose feedstock. Also provided are methods of producing MEG (or GA or xylitol), or optionally MEG (or GA or xylitol) and one or more co-product, from one or more hexose feedstock using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or the products MEG (or GA or xylitol), or optionally MEG (or GA or xylitol) and one or more co-product.

    PRODUCTION OF MALONATE SEMIALDEHYDE AND DERIVATIVES BY MICROORGANISMS EXPRESSING ASPARTATE 1-DECARBOXYLASE

    公开(公告)号:US20220380815A1

    公开(公告)日:2022-12-01

    申请号:US17830229

    申请日:2022-06-01

    Applicant: Braskem S.A.

    Abstract: The present disclosure provides recombinant microorganisms and methods for producing malonate semialdehyde and/or related products, such as ketones, alcohols, organic acids, esters, alkenes, amino acids, and combinations thereof including 3-hydroxypropionic acid, acrylic acid, propionic acid, 1-propanol, acetone, 2-propanol, butanone, 1-butanol, 2-butanol, methyl propionate, 1,3-propanediol, isoamyl alcohol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, lactic acid, adipic acid, glutamic acid, itaconic acid, ethyl acetate, isopropyl acetate, acetic acid, butyric acid, caproic acid, citric acid, methacrylic acid, succinic acid, propylene, butadiene, ethanol, isoprenol, leucine, isoleucine, glutamine, glycine, and isoprene, from β-alanine. The recombinant microorganism expresses an asparate 1-decarboxylase that catalyzes the production of malonate semialdehyde from β-alanine.

    PRODUCTION OF ETHANOL WITH ONE OR MORE CO-PRODUCTS IN YEAST

    公开(公告)号:US20210261987A1

    公开(公告)日:2021-08-26

    申请号:US17182061

    申请日:2021-02-22

    Applicant: Braskem S.A.

    Abstract: The disclosure provides processes for the production of ethanol and one or more co-products from a fermentable carbon source. The ethanol and one or more co-products are produced in an ethanol-producing yeast modified to further produce the one or more co-products. The processes involve contacting a fermentable carbon source with the modified yeast in a fermentation medium, fermenting the yeast in the fermentation medium such that the yeast produces ethanol and the one or more co-products from the fermentable carbon source, and isolating the ethanol and the one or more co-products. The modified yeast is an ethanol-producing yeast that produces ethanol in a greater concentration than the one or more co-products. Additionally, the disclosure provides the modified yeast disclosed herein.

    MICROORGANISMS AND METHODS FOR THE PRODUCTION OF GLYCOLIC ACID AND GLYCINE VIA REVERSE GLYOXYLATE SHUNT

    公开(公告)号:US20200263210A1

    公开(公告)日:2020-08-20

    申请号:US16791556

    申请日:2020-02-14

    Applicant: Braskem S.A.

    Abstract: The present invention provides biochemical pathways, glyoxylate producing recombinant microorganisms, and methods for the production and yield improvement of glycolic acid and/or glycine via a reverse glyoxylate shunt. The reverse glyoxylate shunt comprises an enzyme that catalyzes the carboxylation of phosphoenol pyruvate (PEP) to oxaloacetate (OAA), or an enzyme that catalyzes the carboxylation of pyruvate to oxaloacetate (OAA) or an enzyme that catalyzes the carboxylation of pyruvate to malate or a combination of any of the previous reactions; an enzyme that catalyzes the conversion of malate to malyl-CoA; an enzyme that catalyzes the conversion of malyl-CoA to glyoxylate and acetyl-CoA; and optionally an enzyme that catalyzes the conversion of oxaloacetate (OAA) to malate. Glyoxylate is reduced to produce glycolate. Alternatively, glyoxylate is converted to glycine. The reverse glyoxylate shunt pathway of the present invention can be utilized synergistically with other glycolic acid and/or glycine producing pathways to increase product yield.

Patent Agency Ranking