摘要:
A vapor delivery system for the manufacture of an optical preform includes a deposition bubbler (60) and another bubbler (40) referred to as a supply bubbler which is interposed between a reservoir (24) of a liquid and the deposition bubbler. Heat energy is applied to the supply bubbler and to the deposition bubbler to vaporize liquid therein. A carrier gas is introduced into the liquid in the supply bubbler at a location below the free surface and into the deposition bubbler to cause vapor of the liquid to become entrained in the carrier gas and to flow from the supply bubbler into the deposition bubbler and from the deposition bubbler to a substrate tube from which an optical preform is made. Facilities are provided for maintaining sufficient liquid in the supply bubbler and suitable temperatures of the liquid in the supply and deposition bubblers to control the vapor flow into and out of the deposition bubbler to prevent unintended perturbations in the deposition bubbler. As a result, the concentration level of the vapor which is entrained in the carrier gas and delivered to the substrate tube is maintained at a substantially constant value.
摘要:
An optical preform is prepared first by depositing soot about a glass subate rod (22) to form a boule. Then the soot boule is sintered to consolidate the material and provide a preform from which optical fiber is drawn. The boule is relatively large so that the resulting preform is capable of providing more optical fiber than those used in the past. In order to be able to sinter successfully the enlarged boule, microwave energy from a furnace (60) is coupled to the glass rod so that the sintering proceeds from the rod radially outwardly thereby allowing gases readily to escape and rendering the process highly efficient.
摘要:
The effluent of a process for making a preform from which an optical fiber is drawn is directed into a scrubber (40) of a loop (20) where it is treated with an aqueous solution to provide a solvent mixture which comprises particulates and a solvent solution including germanium. Subsequently, the solvent mixture is moved into a first filter system (55) which provides a filtrate free of particulates above a first size that is returned to the scrubber for reuse and a residue. Then the residue from the first filter system is moved into a second filter system (80) which provides a filtrate free of particulates larger than a second size that is smaller than the first size and a residue. The filtrate from the second filter system also is returned to the scrubber for reuse while the residue from the second filter system is recirculated therethrough. When the germanium concentration reaches a predetermined level, portions of the residue from the second filter system are withdrawn and subsequently treated with a precipitating agent to recover germanium.