Abstract:
An appliance using water including an incoming water valve is provided. The appliance also includes a sensor disposed in-line to an incoming flow of water received from the incoming water valve and is configured to sense a degree of hardness in the incoming flow of water. The sensor includes a substrate and a sensing element disposed on the substrate. The sensing element includes a sensing matrix, an indicator for one or more chemical species in a flow of water, and a selectivity component that reacts reversibly with the one or more chemical species in the water. The sensor also includes a light source configured to direct light through the substrate and the sensing matrix. The sensor further includes a light detector configured to receive transmitted light from the substrate and the sensing matrix and to generate a signal representative of selective wavelengths of the light indicative of the one or more chemical species in the flow of water. The appliance also includes a cleaning volume, a drain for the cleaning volume and an additive valve for an additive used for cleaning. The appliance further includes a controller configured to receive a signal indicative of hardness of the flow of water from the sensor and output it to control the incoming water valve, the additive valve and the drain on the cleaning volume.
Abstract:
A humidifier meters water into a chamber in which it is subjected to ultraviolet light for a predetermined period of time sufficient to destroy microorganisms whereupon the static quantity of water is transferred to a water dispersing unit which discharges the decontaminated water in a finely divided form into the environment.
Abstract:
A hot water humidifier with an automatic siphon drain fed with cooler source water is flushed via a drain. The humidifier includes the humidifier tank and an inverted U-shaped siphon conduit having one end coupled to the tank and the other end coupled to the drain. A valve controlling the cooler source water feeds the water into the tank to maintain the temperature of an admixture of cooler source water and any preexisting tank water at or below a predetermined temperature during a flush cycle. The tank is flushed and drained via the automatic siphon based upon the level of the admixture in the tank and the level of admixture in the siphon. The source water may be coupled to the humidifier tank via the siphon conduit such that cooler source water may be added during the siphoning action. A method of flushing a hot water humidifier is also included.
Abstract:
The invention concerns inserts in the moist/wet region of cooling towers, which essentially consist of plastic. An additive that prevents or considerably reduces soiling through the formation and buildup on the inserts during subsequent use is added to the plastic.
Abstract:
A process and apparatus for periodically dumping liquids in an installation, in which liquids are recycled or otherwise accumulate dissolved and/or suspended contaminants, which process and apparatus makes use of a container for a liquid which is alternately filled and drained during operation of the installation, resulting in changing weight or buoyancy of the container or level of a float in the container, which actuates a dumping valve when a given critical weight, buoyancy or float level is exceeded or reduced.
Abstract:
A hot water humidifier with an automatic siphon drain fed with cooler source water is flushed via a drain. The humidifier includes the humidifier tank and an inverted U-shaped siphon conduit having one end coupled to the tank and the other end coupled to the drain. A valve controlling the cooler source water feeds the water into the tank to maintain the temperature of an admixture of cooler source water and any preexisting tank water at or below a predetermined temperature during a flush cycle. The tank is flushed and drained via the automatic siphon based upon the level of the admixture in the tank and the level of admixture in the siphon. The source water may be coupled to the humidifier tank via the siphon conduit such that cooler source water may be added during the siphoning action. A method of flushing a hot water humidifier is also included.
Abstract:
A cooling tower includes a cover and a heat exchanger positioned within a water circulation channel in order to exchange heat between water and air through contact with air. A closed housing is positioned within the cover, and the heat exchanger is positioned within and maintained in an airtight state within the housing. An air supply duct is in communication with the housing for supplying air, and an exhaust duct is in flow communication for exhausting air from the housing. A blower generates air flow in the air supply duct, the housing, and the exhaust.
Abstract:
A humidifier is provided of the type which has a water tank or reservoir for holding tap water. Common tap water frequently is "hard" due to dissolved minerals which result in the humidifier emitting a fine dust when such water is used. By affixing electroplated electrodes to the interior of the tank minerals such as calcium carbonate can precipitate on the surface of the cathodes. Temporarily reversing the polarity of the electrodes will cause the calcium carbonate to be dislodged from the electrodes and fall to the bottom of the reservoir where it can be removed.
Abstract:
An evaporative humidifier includes a top cover and a water reservoir tank removably mounted on top of a base platform. Several of the components of the humidifier contain a biocide for resisting the growth of bacteria and fungi on all surfaces of the components. The humidifier includes, in one embodiment, a pump assembly for moving water from the base platform to the top of an evaporator panel disposed in an air stream drawn through the humidifier. Alternatively, a paper wick is partially submerged in the pool of water in the base platform for drawing water up into the air stream by capillary action.
Abstract:
A precooling system for an evaporative cooler for a closed loop cooling fluid system includes a supplemental heat exchanging coil connected in the cooling fluid loop upstream of the main evaporative cooler coils and positioned in the outlet air flow through the evaporative cooler, but above or outside the path of the spray water. The supplemental heat exchanging coil provides enough additional cooling capacity to allow the spray water system to be completely shut off and the spray water sump drained during low outside ambient temperature operation. Freeze up of the sump and other parts of the spray water system are completely eliminated and a substantial saving in spray water consumption and energy for freeze prevention systems is realized.