摘要:
In a method and equipment for operating a voice-supported system, such as a communications and/or intercom/two-way intercom device in a motor vehicle, using at least one microphone and at least one loudspeaker to reproduce a signal generated by the microphone, as well as a bandpass filter configured between the microphone and the loudspeaker, a power of the signal as a function of a frequency is determined, and the bandpass filter is adjusted as a function of at least one local maximum of the power of the signal as a function of the frequency.
摘要:
A method and a device are for operating a voice-enhancement system, such as a communication and/or intercom/two-way intercom or duplex telephony device in a motor vehicle. The device includes at least one microphone and at least one loudspeaker for reproducing a signal generated by the microphone, as well as a bandpass filter configured between the microphone and the loudspeaker. The bandpass filter is adjusted as a function of a comparison between the power of the signal generated by the microphone at a test frequency, and the power of the signal generated by the microphone at an at least substantially integral multiple of the test frequency, or as a function of a comparison between the power of the signal generated by the microphone at a test frequency, and the power of the signal generated by the microphone at the test frequency at at least an earlier point in time.
摘要:
An active adaptive control system and method has frequency dependent filtering with a transfer characteristic which is a function of a frequency dependent shaped power limitation characteristic maximizing usage of available output transducer authority. Band separation is provided for different tones. Power limit partitioning is provided for effectively distributing power between correction tones to maximize model performance.
摘要:
An active acoustic attenuation system prevents overdriving of the canceling output transducer or speaker (14) by shunting at least part of the correction signal (46) to a parallel shunt path (306) and away from the output transducer (14) Variable gains (308 and 310) are provided in the shunt path (306) and the input to the output transducer (14) for varying the ratio between the part of the correction signal (46) supplied to the output transducer (14) and the part of the correction signal (46) shunted to the shunt path (306). A first adaptive filter model (40) has an error input (202) from the error signal and outputs the correction signal (46). A second adaptive filter model (142) models the output transducer (14) and the error path (56) between the output transducer (14) and the error transducer (16). A copy (312) of the second model (142) has an input from the output (46) of the first model (40), and the output of the copy (312) is summed with the error signal (44) and the resultant sum is supplied to the error input (202) of the first model (40), such that the shunt path (306) is provided through the model copy (312).
摘要:
Interpretation of virtual types in a software development, debugging, or monitoring environment. Display and modification of variables having virtual types. Detection of virtual types.
摘要:
A digital voice enhancement, DVE, communication system includes an instability detector detecting an unstable acoustic feedback condition from a loudspeaker to a microphone by sensing a condition of the electrical signal transmitted from the microphone to the loudspeaker, and a corrective processor responsive to the instability detector to modify the electrical signal to reduce unstable acoustic feedback. The sensed condition may be magnitude, power, or, preferably, the sinusoidal characteristic of the electrical signal, namely the electrical signal becoming sinusoidal in nature.
摘要:
In a DVE, digital voice enhancement, communication system, the selection decision for choosing which microphone to be active is based on a given function of the speech of a respective talker relative to his/her acoustic environment at the respective microphone. The selection decision is based on a selection technique normalizing at least one of a) different microphone sensitivities and b) different background noise levels at the respective microphones, preferably based on the ratio of how much louder a talker speaks over the background noise at his/her respective microphone.