Abstract:
Various configurations and arrangements of systems and methods for compensating for variations in VCO output frequencies are described. A system in accordance with the disclosure can include an oscillator circuit including an oscillator, a first variable capacitance diode coupled to the oscillator and a second variable capacitance diode coupled to the oscillator. The system further includes a voltage source configured to apply a first voltage to the oscillator circuit to cause the output signal to comprise a selected frequency, the selected frequency being based on a received reference voltage. The system further includes a controller circuit configured to compare an operating voltage of the oscillator to the reference voltage while the first voltage is applied to the oscillator; and apply a second voltage to the oscillator circuit based on the comparison. The second voltage compensates for a difference between the reference voltage and the first voltage.
Abstract:
Embodiments provide improved systems and methods of gain control and calibration for wireless transmitters. In particular, embodiments allow linear gain control over the entire transmitter gain control range, independent of temperature/process variations. Embodiments require very low power consumption compared to existing approaches. Embodiments may also be used for gain control calibration during production time, thereby substantially reducing production calibration time and cost.
Abstract:
A method and apparatus is provided to improve upon the efficiency of a power amplifier. Suitable hardware/software in the form of circuitry, logic gates, and/or code functions to construct an envelope tracking waveform of an input communications signal and modulate the input supply voltage based on power amplifier circuitry operational parameters such as slew rates.
Abstract:
A method for an antenna mismatch compensation may include determining an amplitude ratio by measuring a ratio of amplitudes of a reflected signal and an incident signal of an antenna tuning circuit coupled to an antenna. A time difference between the reflected signal and the incident signal may be measured. The time difference may be converted to a phase difference. A topology and one or more parameters of the antenna tuning circuit may be determined based on the amplitude ratio and the phase difference so that the antenna tuning circuit compensates for the antenna mismatch.
Abstract:
Various configurations and arrangements of systems and methods for compensating for variations in VCO output frequencies are described. A system in accordance with the disclosure can include an oscillator circuit including an oscillator, a first variable capacitance diode coupled to the oscillator and a second variable capacitance diode coupled to the oscillator. The system further includes a voltage source configured to apply a first voltage to the oscillator circuit to cause the output signal to comprise a selected frequency, the selected frequency being based on a received reference voltage. The system further includes a controller circuit configured to compare an operating voltage of the oscillator to the reference voltage while the first voltage is applied to the oscillator; and apply a second voltage to the oscillator circuit based on the comparison. The second voltage compensates for a difference between the reference voltage and the first voltage.
Abstract:
A method for an antenna mismatch compensation may include determining an amplitude ratio by measuring a ratio of amplitudes of a reflected signal and an incident signal of an antenna tuning circuit coupled to an antenna. A time difference between the reflected signal and the incident signal may be measured. The time difference may be converted to a phase difference. A topology and one or more parameters of the antenna tuning circuit may be determined based on the amplitude ratio and the phase difference so that the antenna tuning circuit compensates for the antenna mismatch.
Abstract:
A method and apparatus is provided to improve upon the efficiency of a power amplifier. Suitable hardware/software in the form of circuitry, logic gates, and/or code functions to construct an envelope tracking waveform of an input communications signal and modulate the input supply voltage based on power amplifier circuitry operational parameters such as slew rates.
Abstract:
Average Power Tracking (APT) is a technique that can be utilized for vary the supply voltage to a power amplifier (PA) on a timeslot basis in order to reduce power consumption of the PA. Systems and methods are provided for maximizing power savings associated with the PA by utilizing APT in a continuous and aggressive manner. Additionally, the systems and methods can further compensate for variations in temperature, frequency, antenna load, and peak to average power ratio (PAPR) without sacrificing the power savings.