摘要:
The invention relates to time-of-flight mass spectrometers, equipped with ion reflector and ion detector, with orthogonal ion injection and outpulsing of a segment of the ion beam perpendicular to the direction of injection in a pulser. The invention is directed to a time-of-flight mass spectrometer in which a reflector and an ion detector each have an angular offset about an axis that is perpendicular to the respective directions of injection and deflection. This allows a large distance to be used between the pulser and detector with the highest possible utilization of ions.
摘要:
The invention covers a method for detecting ions in high resolution time-of-flight mass spectrometers which operate with secondary electron multiplier multichannel plates and in which many single spectra are acquired and added to produce a sum spectrum. The invention involves (a) using an analog digital converter (ADC) for converting electron currents from secondary electron multipliers, instead of a time-to-digital converter (TDC) which was previously used for highest possible signal resolution, (b) performing a separate rapid peak recognition procedure for the ion signals of each spectrum by a fast calculation method, thereby collecting flight time and intensity value pairs for the ion peaks, and (c) constructing a time-of-flight/intensity histogram, which is further processed as a composite time-of-flight spectrum. The invention retains the significantly higher measurement dynamics of an ADC and achieves the improved resolution capability of a TDC, but without showing the latter's known signal distortion due to dead times.
摘要:
The invention relates to the construction and operation of a slit diaphragm pulser for a time-of-flight mass spectrometer with orthogonal injection of the ions to be examined. The invention includes switching three diaphragm potentials during a transition from a filling phase to an acceleration phase in order to maintain a potential along the axis of the injected ion beam at a constant level, to prevent any penetration by the accelerating fields during the filling phase and to obtain extremely high mass resolution in the acceleration phase through a lens effect.