摘要:
Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In illustrative examples, captured data including detected events is analyzed to identify likely overdetection of cardiac events. In some illustrative examples, when overdetection is identified, data may be modified to correct for overdetection, to reduce the impact of overdetection, or to ignore overdetected data. New methods for organizing the use of morphology and rate analysis in an overall architecture for rhythm classification and cardiac signal analysis are also discussed.
摘要:
Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In illustrative examples, captured data including detected events is analyzed to identify likely overdetection of cardiac events. In some illustrative examples, when overdetection is identified, data may be modified to correct for overdetection, to reduce the impact of overdetection, or to ignore overdetected data. New methods for organizing the use of morphology and rate analysis in an overall architecture for rhythm classification and cardiac signal analysis are also discussed.
摘要:
Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In some illustrative examples, detected events are analyzed to identify changes in detected event amplitudes. When detected event amplitudes are dissimilar from one another, a first set of detection parameters may be invoked, and, when detected event amplitudes are similar to one another, a second set of detection parameters may be invoked. Additional methods determine whether the calculated heart rate is “high” or “low,” and then may select a third set of detection parameters for use when the calculated heart rate is high.
摘要:
Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In illustrative examples, captured data including detected events is analyzed to identify likely overdetection of cardiac events. In some illustrative examples, when overdetection is identified, data may be modified to correct for overdetection, to reduce the impact of overdetection, or to ignore overdetected data. New methods for organizing the use of morphology and rate analysis in an overall architecture for rhythm classification and cardiac signal analysis are also discussed.
摘要:
Methods and implantable devices for cardiac signal analysis. The methods and devices make use of waveform appraisal techniques to distinguish event detections into categories for suspect events and waveform appraisal passing events. When adjustments are made to the data entering analysis for waveform appraisal, the waveform appraisal thresholds applied are modified as well. For example, when the data analysis window for waveform appraisal changes in length, a waveform appraisal threshold is modified. Other changes, including changes in sensing characteristics with which waveform appraisal operates may also result in changes to the waveform appraisal threshold including changes in gain, sensing vector, activation of other devices, implantee posture and other examples which are explained.
摘要:
Devices and methods for analyzing cardiac signal data. An illustrative method includes identifying a plurality of detected events and measuring intervals between the detected events for use in rate estimation. In the illustrative embodiment, a set of intervals is used to make the rate estimation by first discarding selected intervals from the set. The remaining intervals are then used to calculate an estimated interval, for example by averaging the remaining intervals.
摘要:
Methods and implantable devices for cardiac signal analysis. The methods and devices make use of waveform appraisal techniques to distinguish event detections into categories for suspect events and waveform appraisal passing events. When adjustments are made to the data entering analysis for waveform appraisal, the waveform appraisal thresholds applied are modified as well. For example, when the data analysis window for waveform appraisal changes in length, a waveform appraisal threshold is modified. Other changes, including changes in sensing characteristics with which waveform appraisal operates may also result in changes to the waveform appraisal threshold including changes in gain, sensing vector, activation of other devices, implantee posture and other examples which are explained.
摘要:
Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In some illustrative examples, detected events are analyzed to identify changes in detected event amplitudes. When detected event amplitudes are dissimilar from one another, a first set of detection parameters may be invoked, and, when detected event amplitudes are similar to one another, a second set of detection parameters may be invoked. Additional methods determine whether the calculated heart rate is “high” or “low,” and then may select a third set of detection parameters for use when the calculated heart rate is high.
摘要:
Adaptive methods for initiating charging of the high power capacitors of an implantable medical device for therapy delivery after the patient experiences a non-sustained arrhythmia, and devices that perform such methods. The adaptive methods and devices adjust persistence criteria used to analyze an arrhythmia prior to initiating a charging sequence to deliver therapy. Some embodiments apply a specific sequence of X-out-of-Y criteria, persistence criteria and last even criteria before starting charging for therapy delivery.
摘要:
The present invention is directed toward a detection architecture for use in implantable cardiac rhythm devices. The detection architecture of the present invention provides methods and devices for discriminating between arrhythmias. Moreover, by exploiting the enhanced specificity in the origin of the identified arrhythmia, the detection architecture can better discriminate between rhythms appropriate for device therapy and those that are not.