Abstract:
A method for preparation of mesoporous nitrogen-doped carbon includes forming a composition by solubilizing a nitrogen-containing polymer in an aqueous solution of ZnCl2 and drying the aqueous solution, the method further includes heating the composition after drying to a temperature sufficiently high to carbonize the nitrogen-containing polymer to form the mesoporous nitrogen-doped carbon.
Abstract:
A method for preparation of mesoporous nitrogen-doped carbon includes forming a composition by solubilizing a nitrogen-containing polymer in an aqueous solution of ZnCl2 and drying the aqueous solution, the method further includes heating the composition after drying to a temperature sufficiently high to carbonize the nitrogen-containing polymer to form the mesoporous nitrogen-doped carbon.
Abstract:
A method for preparation of mesoporous nitrogen-doped carbon includes forming a composition by solubilizing a nitrogen-containing polymer in an aqueous solution of ZnCl2 and drying the aqueous solution, the method further includes heating the composition after drying to a temperature sufficiently high to carbonize the nitrogen-containing polymer to form the mesoporous nitrogen-doped carbon.
Abstract:
In one aspect, a photonic band gap (PBG) structure comprises: a first conducting layer; a second conducting layer; and a nanocomposite layer between the first conducting layer and the second conducting layer, the nanocomposite layer comprising one or more composite materials and one or more nanoparticles dispersed within the one or more composite materials, with the one or more composite materials comprising a material that is optically transparent.
Abstract:
A composition formed by dispersing at least a plurality of first particles within a matrix material and dispersing at least a plurality of second particles within the matrix material, the second particles being different from the first particles, wherein interaction between the at least a plurality of second particles and the at least a plurality of first particles determines a spatial distribution of the plurality of second particles within the matrix material.
Abstract:
A composition formed by dispersing at least a plurality of first particles within a matrix material and dispersing at least a plurality of second particles within the matrix material, the second particles being different from the first particles, wherein interaction between the at least a plurality of second particles and the at least a plurality of first particles determines a spatial distribution of the plurality of second particles within the matrix material.