Abstract:
A process for the formation of a deformable battery electrode includes mixing a metal component including at least one of a metal or a metal alloy, a polymer component, and a dispersant component to create a mixture. The method further includes heated the mixture to a temperature above the melting point of the metal or the metal alloy and agitating the mixture to form a dispersion of the (molten) metal or the metal alloy in the mixture. The method further includes cooling the mixture to a temperature below the melting point of the metal or the metal alloy to form a stabilized dispersion of the metal or the metal alloy. The polymer component includes a polymer having a melting point equal to or below that of the metal or the metal alloy and a glass transition temperature sufficiently low that the stabilized dispersion is deformable.
Abstract:
A mixture of polymers with lubricating properties is provided. The polymer can be used to produce a lubricating fluid. They can also be born on a surface or embedded in a porous material. This mixture of polymers comprises (a) a pharmaceutically acceptable bottle-brush polymer comprising a backbone with polymeric pendant chains, and (b) a pharmaceutically acceptable linear polymer. In the lubricating fluid, the bottle-brush polymer and the linear polymer are dissolved together in a pharmaceutically acceptable solvent.
Abstract:
Materials and methods for conducting an atom transfer radical polymerization in the presence of oxygen by interlocking enzymatic activities are provided herein.
Abstract:
Methods for conducting controlled grafting-from radical polymerizations from biomolecules under conditions that are biologically compatible are described. The methods provide biomolecule-polymer conjugates with highly controlled structures and narrow polydispersities under aqueous reaction conditions and biological temperatures. Biomolecules, such as proteins and nucleotides can be conjugated to polymers with high levels of control.
Abstract:
A composition includes a polymer including extending chains, side chains, or branches. One (or more) of a plurality of a first strand of nucleic acid is attached to each of a plurality of the side chains. One (or more) of a plurality of a second strand of nucleic acid, which is complementary to the first strand of nucleic acid, is complexed to each of the plurality of the first strand of nucleic acid to form a double strand of nucleic acid on each of the plurality of the side chains. At least one fluorescent compound is associated with the double strand of nucleic acid on each of the plurality of the side chains.
Abstract:
Carbon-based nanomaterials comprising graphitic domains that are doped with heteroatoms are disclosed. Processes for the production the nanomaterials, methods of using the nanomaterials, and articles or devices comprising the nanomaterials are also disclosed.
Abstract:
A process for polymerizing radically (co)polymerizable monomers at a temperature between −10° C. and 110° C. in an aqueous system comprising one or more radically (co)polymerizable monomer(s) is disclosed, and includes a molar excess of a ligand forming a soluble transition metal complex with an added transition metal salt that participates in a reversible reduction-oxidation cycle with one of an added site specific functional initiator and a dormant polymer chain having a radically transferable atom or group. The initial soluble catalyst complex concentration in the higher oxidation state is less than or equal to 2500 ppm. The reaction is conducted in the presence of an activator regenerator. The mole fraction of the soluble lower activator oxidation state transition metal formed by action of the activator regenerator, to transition metal in a higher deactivator oxidation state is less than 10%. The formed polymer chains have a dispersity of less than 1.5.
Abstract:
A series of ligands with site specific electron donating substituents that form a catalyst complex with a transition metal and are suitable for catalysis of atom transfer radical reactions, including ATRP are described. Faster catalysis rates were observed allowing for low catalyst concentrations and linear increases in molecular weight with monomer conversion, and narrow molecular weight distributions. Cyclic voltammetry revealed that increasing the strength and number of conjugated electron donating groups resulted in more stable complexes and larger ATRP equilibrium constants.
Abstract:
Materials and methods for conducting an atom transfer radical polymerization in the presence of oxygen by interlocking enzymatic activities are provided herein.
Abstract:
A method of synthesizing a polynucleotide composition includes attaching a compound including at least one initiator or at least one transfer agent for a reversible deactivation radical polymerization to an end of a nucleotide chain assembly immobilized upon a solid phase support during a solid phase synthesis of a polynucleotide so that the initiator or the transfer agent is attacked to the end of a nucleotide chain assembly in a manner which is stable under conditions of deprotection of the polynucleotide, and growing a polymer from the initiator of from a site of the chain transfer agent via the reversible deactivation radical polymerization to form the polynucleotide composition.