Abstract:
A light source device includes: a first light emitting element that emits first wavelength band light; a fluorescence wheel including a fluorescence emission region with which fluorescence excited by the first wavelength band light is emitted as second wavelength band light; a second light emitting element that emits third wavelength band light; a combining unit that combines the first wavelength band light, the second wavelength band light, and the third wavelength band light; a color wheel; and a CPU that controls the first light emitting element, the second light emitting element, the fluorescence wheel, and the color wheel, wherein the CPU performs synchronization control on the fluorescence wheel and the color wheel, and performs control to shift a synchronization position of the color wheel with respect to the fluorescence wheel in accordance with an output mode.
Abstract:
A light source unit includes: a first light emitting element configured to emit a first wavelength band light; a second light emitting element configured to emit a second wavelength band light; a luminescent wheel configured to have a first fluorescent light emitting region irradiated with the second wavelength band light to emit a third wavelength band light, and a second fluorescent light emitting region that emits a fourth wavelength band light including a wavelength band of the first wavelength band light and the third wavelength band light having a wavelength band adjacent to the first wavelength band light being provided in parallel in a circumferential direction; a color wheel configured to have a second transmissive region that transmits the first wavelength band light to the fourth wavelength band light, and a third transmissive region that transmits only the first wavelength band light or transmits only the first wavelength band light and the second wavelength band light being installed in parallel in the circumferential direction, and synchronously rotate with the luminescent wheel; and a controller configured to cause the second wavelength band light to be emitted in each output period and the first wavelength band light to be emitted in the output period in which the fourth wavelength band light is emitted, in a plurality of output periods in a frame.
Abstract:
To provide a light source unit which can execute a projection with less consumed power and noise and a projector including this light source unit, a light source unit is provided which includes an excitation light source and a luminescent plate which includes a first luminescent light emitting area on which a resin mixed luminescent material layer containing a resin binder is provided and a second luminescent light emitting area on which a luminescent material containing no resin binder is provided, on to which first luminescent light emitting area and second luminescent light emitting area excitation light from the excitation light source is shone.
Abstract:
A light source unit of the present invention includes a luminescent material plate, a joining plate on one side of which the luminescent material plate is disposed, a heat dissipating member disposed on the other side of the joining plate, and a heat conductive layer configured to thermally connect the joining plate and the heat dissipating member together and disposed between the joining plate and the heat dissipating member, and a heat conductivity of an area of the heat conductive layer which corresponds to the luminescent material plate is lower than a heat conductivity of a periphery of the area of the heat conductive layer which corresponds to the luminescent material plate.
Abstract:
There is provided a light source unit including an excitation light source which emits excitation light, a luminescent material which receives excitation light from the excitation light source to emit luminous light, a diffuse plate on which the luminous light is incident, and a driving device which moves the diffuse plate so as to change an entering position of the luminous light on the diffuse plate.
Abstract:
There is provided a light source unit including an excitation light source emitting excitation light, and a luminescent member having a transmission portion transmitting excitation light from the excitation light source, a first luminescent material layer placed beside the transmission portion on one side of the luminescent member and a second luminescent material layer placed beside the transmission portion on the other side of the luminescent member, wherein the first luminescent material layer and/or the second luminescent material layer emits luminous light by being excited by the excitation light, and wherein a guiding optical system is provided which shines excitation light which has passed through the transmission portion from the excitation light source on to the first luminescent material layer and causes luminous light emitted from the first luminescent material layer to be incident on the transmission portion.
Abstract:
The invention includes an excitation light source, a light distribution adjusting member on which excitation light from the excitation light source is incident, and a luminescent material which emits luminous light of a different wavelength from that of the excitation light by the excitation light which passes through the light distribution adjusting member being shone on thereto, wherein the excitation light source is disposed so that the excitation light is incident on a light incident surface of the light distribution adjusting member at a predetermined angle.
Abstract:
A fluorescent substrate includes a base having a reflective surface and a flat bottom surface, and a fluorescent layer disposed on the reflective surface of the base such that the reflective surface of the base directs, outward from the wheel, fluorescence emitted from the fluorescent layer due to its excitation by exciting light. The reflective surface of the base has an array of minute reflective structures formed thereon so as to reflect, outward from the reflective surface, fluorescence emitted substantially parallel to the flat bottom surface of the base from the fluorescent layer.
Abstract:
A fluorescent substrate includes a base having a reflective surface and a flat bottom surface, and a fluorescent layer disposed on the reflective surface of the base such that the reflective surface of the base directs, outward from the wheel, fluorescence emitted from the fluorescent layer due to its excitation by exciting light. The reflective surface of the base has an array of minute reflective structures formed thereon so as to reflect, outward from the reflective surface, fluorescence emitted substantially parallel to the flat bottom surface of the base from the fluorescent layer.
Abstract:
There is provided a light source unit having a light source which emits a laser beam, a plurality of diffusing plates on which the laser beam is incident and which emit the laser beam incident thereon as diffuse light, and a driving mechanism which moves the plurality of diffusing plates, wherein the laser beam from the light source is incident on one diffusing plate of the plurality of diffusing plates, and diffuse light emitted from the one diffusing plate is incident on the other diffusing plate of the plurality of diffusing plates.