Exhaust gas purification catalyst

    公开(公告)号:US10710023B2

    公开(公告)日:2020-07-14

    申请号:US16078082

    申请日:2017-02-23

    摘要: An exhaust gas purification catalyst, characterized by having a catalyst layer containing palladium, rhodium, and alumina, which supports a sulfate of an alkaline-earth metal selected from barium sulfate and strontium sulfate, and the correlation coefficients ρPd,AE and ρRh,AE calculated from the characteristic X-ray intensity measured using an electron beam micro-analyzer for the palladium, rhodium, and alkaline-earth metal being +0.75 to +1.00 and 0.00 to +0.25, respectively, using 350 points as measurement points obtained by equally dividing the catalyst layer into 351 parts in the thickness direction on a virtual straight line that runs through the catalyst layer in the thickness direction.

    Exhaust gas purification catalyst

    公开(公告)号:US11110435B2

    公开(公告)日:2021-09-07

    申请号:US16086083

    申请日:2017-03-13

    摘要: An exhaust gas purification catalyst comprises a substrate; a catalyst layer formed on the substrate and containing at least palladium (Pd) and rhodium (Rh) as a metal functioning as an oxidation and/or reduction catalyst. The catalyst also comprises a carrier that supports the metal, and an OSC material having oxygen storage capacity. The catalyst layer has, when disposed in the exhaust pipe, a front section positioned upstream in an exhaust gas flow direction within the exhaust pipe, and a rear section positioned downstream of the front section in the exhaust gas flow direction. The front section contains palladium (Pd) but does not contain the OSC material, and a proportion, at which the front section is formed from an upstream leading end in the exhaust gas flow direction, is 10% to 40% with respect to 100% of a total length of the substrate.

    Exhaust gas purification catalyst device

    公开(公告)号:US11352924B2

    公开(公告)日:2022-06-07

    申请号:US17251942

    申请日:2019-06-26

    摘要: An exhaust gas purification catalyst device has catalyst coating layers, which extend from the upstream side to the downstream side of the exhaust gas flow. The catalyst coating layers each have at least three zones present in order from the upstream side to the downstream side of the exhaust gas flow, and each of these at least three zones is an oxidation catalyst zone or a reduction catalyst zone. In the uppermost layer of an oxidation catalyst zone, the total number of atoms of platinum and palladium is greater than the number of atoms of rhodium; in the upper most layer of a reduction catalyst zone, the number of atoms of rhodium is greater than the total number of atoms of platinum and palladium. The oxidation catalyst zones and the reduction catalyst zones alternate at least twice in the exhaust gas flow direction.

    Exhaust Gas Purification Catalyst

    公开(公告)号:US20220362756A1

    公开(公告)日:2022-11-17

    申请号:US17763254

    申请日:2020-08-20

    发明人: Chihiro Kasuya

    摘要: The present invention provides an exhaust gas purification catalyst including a base material and a catalyst layer 20 that is arranged on the base material. The catalyst layer 20 includes a catalyst metal and a carrying material carrying the catalyst metal. The catalyst layer 20 satisfies below: (1) in a pore distribution curve measured by a mercury porosimeter, a peak for the largest pore volume exists within a range of a pore diameter equal to or more than 1 μm and not more than 10 μm; and (2) on an electron microscopy observation image (with a 1000-fold magnification) of a surface of the catalyst layer 20, when areas of a plurality of voids comprised in the electron microscopy observation image are respectively calculated, a standard deviation for the areas of the plurality of voids is not more than 30 μm2.

    Exhaust gas cleaning catalyst
    6.
    发明授权

    公开(公告)号:US10369520B2

    公开(公告)日:2019-08-06

    申请号:US15545418

    申请日:2016-01-08

    摘要: The exhaust gas cleaning catalyst according to the present invention is provided with a cylindrical substrate 10 and a catalyst coat layer 20 formed on the surface of the substrate 10. A ratio of the length L in the cylindrical axis direction of the substrate 10 and the diameter D of a cross section orthogonal to the cylindrical axis direction is denoted by (L/D)≤0.8. The coat density of the catalyst coat layer 20 differs between an upstream side portion 10a that includes the exhaust gas inlet-side end 16 of the substrate 10 and a downstream side portion 10b that includes the exhaust gas outlet-side end 18 of the substrate 10. The coat density A in the upstream side portion 10a is lower than the coat density B in the downstream side portion 10b (A