Abstract:
An exhaust discharge system is disclosed. The exhaust discharge system comprises an exhaust stack including a first conduit and a second conduit. The first conduit defines a first flow passageway and arranged around a first longitudinal axis. The first conduit including a skirt portion and a body portion disposed downstream of the skirt portion, and the skirt portion is oriented to slope outward from the body portion. The second conduit is disposed downstream of the first conduit. The second conduit defines a second flow passageway and is arranged around a second longitudinal axis, the second conduit includes a sidewall and an exit port, the exit port having an exit-port cross-section, wherein the exit-port cross-section is oblong in shape. The second longitudinal axis is disposed at an intersection angle to the first longitudinal axis, the intersection angle in a range of 125° to 150°. The exhaust stack is configured to convey treated exhaust from the skirt portion to the exit port.
Abstract:
An exhaust muffler for an internal combustion engine includes a housing. A plurality of partitions are disposed within the housing, defining a plurality of chambers. An inlet pipe and an outlet pipe are also disposed within the housing and both the inlet and outlet pipes include a perforated region. The perforated region permits fluid communication between the inlet pipe, outlet pipe and the plurality of chambers. To attenuate engine noise, the perforated regions of the inlet and outlet pipes are positioned at opposite ends of the housing, forcing the exhaust gas to pass through each of the plurality of partitions and chambers, thereby damping the sound waves with minimum effect on engine back pressure levels. Alternatively, the perforated regions of the inlet and outlet pipes may be aligned in a cross-flow chamber.
Abstract:
An engine exhaust aftertreatment component includes a housing defining an exhaust flow path from an exhaust inlet to an exhaust outlet. The housing supports an internal support channel. An aftertreatment brick module includes a catalytic brick, a can configured to receive the catalytic brick, and an end plate disposed along an end of the can. The end plate includes a coupling mechanism configured to be received within the internal support channel.
Abstract:
An exhaust discharge system and method of assembling is disclosed. The exhaust discharge system may comprises an ejector tube and an exhaust stack. The ejector tube includes an outlet having an outlet cross-section. The ejector tube is configured to convey treated exhaust to the outlet. The outlet cross-section is oriented at an outlet angle to a first horizontal plane. The exhaust stack includes a first conduit and a second conduit. The second conduit includes an exit port. The exit-port cross-section is oblong in shape.
Abstract:
An engine exhaust aftertreatment component includes a housing defining an exhaust flow path from an exhaust inlet to an exhaust outlet. The housing supports an internal support channel. An aftertreatment brick module includes a catalytic brick, a can configured to receive the catalytic brick, and an end plate disposed along an end of the can. The end plate includes a coupling mechanism configured to be received within the internal support channel.