Abstract:
The present invention generally relates to a method of operating a MEMS DVC while minimizing impact of the MEMS device on contact surfaces. By reducing the drive voltage upon the pull-in movement of the MEMS device, the acceleration of the MEMS device towards the contact surface is reduced and thus, the impact velocity is reduced and less damage of the MEMS DVC device occurs.
Abstract:
The present invention generally relates to a DVC having a charge-pump coupled to a MEMS device. The charge-pump is designed to control the output voltage delivered to the electrodes, such as the pull-in electrode or the pull-off electrode, that move the switching element within the MEMS device between locations spaced far from and disposed closely to the RF electrode.
Abstract:
The present invention generally relates to a mechanism for testing a MEMS hysteresis. A power management circuit may be coupled to the electrodes that cause the movable plate that is disposed between the electrodes in a MEMS device to move. The power management circuit may utilize a charge pump, a comparator and a resistor ladder.
Abstract:
The present invention generally relates to methods for increasing the lifetime of MEMS devices by reducing the number of movements of a switching element in the MEMS device. Rather than returning to a ground state between cycles, the switching element can remain in the same state if both cycles necessitate the same capacitance. For example, if in both a first and second cycle, the switching element of the MEMS device is in a state of high capacitance the switching element can remain in place between the first and second cycle rather than move to the ground state. Even if the polarity of the capacitance is different in successive cycles, the switching element can remain in place and the polarity can be switched. Because the switching element remains in place between cycles, the switching element, while having the same finite number of movements, should have a longer lifetime.