Abstract:
A cleaning device for cleaning a marine element towed in water and related methods are provided. The cleaning device includes a body configured to enclose the marine element; at least one wing attached to the body and configured to impart translational and rotational motion to the body when interacting with the water; a switching and locking mechanism configured to change an orientation of the at least one wing between a first orientation and a second orientation when contacting a stopper and also to lock the selected orientation; rotating means attached to an internal surface of the body and configured to contact the marine element, the rotating means having axles that make a fix angle with a longitudinal axis of the body; and a cleaning tool attached to the body and configured to clean the marine element.
Abstract:
A streamer usable underwater for marine seismic surveys is covered by a removable skin to prevent bio-fouling deposits on its outer surface. The removable skin includes a flexible material charged with a biocide substance or has foul release properties, and a closure system configured to join sides of the flexible material. The removable skin may be mounted onboard of a vessel, while the streamer is deployed.
Abstract:
Method and device for cleaning a marine seismic equipment. The device includes a body, a propulsion system for moving along the streamer, a cleaning device for cleaning the equipment, and a control device for controlling a movement of the device.
Abstract:
One or more portions of a streamer or other equipment of a seismic survey system (e.g., birds, buoys, deflectors, etc.) are covered with protective removable skin sections. A protective removable skin section includes a flexible sheet and a reversible closure system configured to join edges of the flexible sheet. The protective removable skin section may be mounted onboard of a vessel, when the equipment is deployed.
Abstract:
Embodiments describe methods, devices and systems for marine seismic surveying which prevent or inhibit marine growth thereon. Towed seismic array elements which can become fouled given their presence in the water for extended time periods are coated with a hydrophobic coating, e.g., a superhydrophobic nanocoating applied manually via an aerosol can or brush. Application of the hydrophobic coating can be performed on board the towing vessel, or even potentially in the water.