Heat Transfer-Based Width Adjustment Method For Continuous Casting Mold

    公开(公告)号:US20200290115A1

    公开(公告)日:2020-09-17

    申请号:US16602300

    申请日:2017-09-21

    Abstract: The present invention provides a heat transfer-based width adjustment method for a continuous casting mold. A boundary condition of a horizontal acceleration velocity α used in heat transfer-based width adjustment of a continuous casting mold is set to a minimum value subject to constraints of a maximum air gap and shell strength. The present invention can constrain a maximum air gap between a copper plate of a narrow mold wall and a casting billet in a heat transfer-based width adjustment process for a continuous casting mold, thereby ensuring sufficient contact between the copper plate of the narrow mold wall and the casting billet, so as to prevent cracks and other defects of the casting billet due to excessive thermal resistance of the air gap, insufficient corner cooling of the casting billet, delayed solidification and concentrated thermal deformation stress. Moreover, a strain of the shell is controlled to be less than a critical strain, thereby preventing collapse of the casting billet, and preventing the casting billet from being scrapped as a result of an uneven narrow wall. Furthermore, since parameter settings of a width adjustment model dynamically change with a casting speed change, width adjustment can be performed within a full casting speed range without having to increase or decrease the casting speed.

    Heat transfer-based width adjustment method for continuous casting mold

    公开(公告)号:US11141782B2

    公开(公告)日:2021-10-12

    申请号:US16602300

    申请日:2017-09-21

    Abstract: The present invention provides a heat transfer-based width adjustment method for a continuous casting mold. A boundary condition of a horizontal acceleration velocity α used in heat transfer-based width adjustment of a continuous casting mold is set to a minimum value subject to constraints of a maximum air gap and shell strength. The present invention can constrain a maximum air gap between a copper plate of a narrow mold wall and a casting billet in a heat transfer-based width adjustment process for a continuous casting mold, thereby ensuring sufficient contact between the copper plate of the narrow mold wall and the casting billet, so as to prevent cracks and other defects of the casting billet due to excessive thermal resistance of the air gap, insufficient corner cooling of the casting billet, delayed solidification and concentrated thermal deformation stress. Moreover, a strain of the shell is controlled to be less than a critical strain, thereby preventing collapse of the casting billet, and preventing the casting billet from being scrapped as a result of an uneven narrow wall. Furthermore, since parameter settings of a width adjustment model dynamically change with a casting speed change, width adjustment can be performed within a full casting speed range without having to increase or decrease the casting speed.

    THIN STRIP PRODUCTION PROCESS EMPLOYING CONTINUOUS CASTING AND ROLLING

    公开(公告)号:US20230241656A1

    公开(公告)日:2023-08-03

    申请号:US18003278

    申请日:2020-09-30

    CPC classification number: B21B1/463 B21B1/227 B21B2001/225 B21B2267/10

    Abstract: The invention discloses a thin strip production process employing continuous casting and continuous rolling, which sequentially includes continuous casting, rough rolling, induction heating, finish rolling, laminar cooling, high-speed shearing and finished product coiling; the process is characterized by further comprising performing in-line heating between the continuous casting and the rough rolling that wide surfaces, narrow surfaces and corners of a casting blank are heated simultaneously during the in-line heating. The present invention effectively reduces the requirements for rough rolling equipment, improves the efficiency of the rough rolling, improves the uniformity of finished thin strips, reduces the out-of-tolerance percentage, improves the thickness stability of the finished thin strips, and further reduces rolling-induced cracks of the thin strips.

Patent Agency Ranking