Abstract:
Pressure/strain piezoresistive are described that include a poled piezoelectric polymer such as PVDF or P(VDF-TrFE) and graphene. The poled piezoelectric polymer and the graphene are electronically coupled to form a heterojunction and provide an ultra-high sensitivity pressure/strain sensor. The sensors can be carried on a flexible supporting substrate such as PDMS or PET to exhibit high flexibility. The materials of formation can be biocompatible and the sensors can be wearable or implantable.
Abstract:
Embodiments of the present disclosure, in one aspect, relate to composites including a carbon nanomaterial having a redox-active material, such as a polymer containing redox groups, disposed on the carbon nanomaterial, methods of making the composite, methods of storing energy, and the like.
Abstract:
Devices and methods relate to a portable self-powered wireless sensor and transmitter providing a tactile driven electric generator, using a 3D printed nano carbon and polymer electrodes. The device has two electrodes capable of producing greater than 2000 V, which when connected to a metal conductor is sufficient to create an electric field that can be used to wirelessly communicate a signal over a range of a few tens of meters. The sensor is completely self-powered and requires no motors or additional power such as active power supplies, batteries, or capacitors. The sensor generated waveform can be modulated by mechanical action such as hand tapping in a given sequence, which is preserved in the wireless signal (akin to Morse coding) and can be detected by existing compatible commercial electronic receivers. Resulting devices are suitable for security applications requiring wireless transmission of codes.
Abstract:
Embodiments of the present disclosure, in one aspect, relate to composites including a carbon nanomaterial having a redox-active material, such as a polymer containing redox groups, disposed on the carbon nanomaterial, methods of making the composite, methods of storing energy, and the like.
Abstract:
Methods for synthesis of high surface area porous silicon-based materials and structures that can be formed according to the methods are described. Methods are scalable and capable of producing large quantities of the high surface area materials with high efficiency. The high surface area products can be in the form of a 3D network of interconnected arms or quills with multimodal porosity including high level pores between and among arms, hollow cores of the arms of the network, and pores through the walls of the arms of the network.