SEALING ENCLOSURE ARRANGEMENTS FOR OPTICAL FIBER CABLES

    公开(公告)号:US20190293888A1

    公开(公告)日:2019-09-26

    申请号:US16306829

    申请日:2017-06-01

    Abstract: Aspects and techniques of the present disclosure relate to an enclosure arrangement that provides a seal useful for sealing optical fiber cables. The enclosure arrangement can include a housing with two shell members that fit together to define a cable passage. The two shell members can include circumferential sealing ribs and longitudinal sealing ribs that each has a rounded profile. A sealant material can be used to wrap the optical fiber cable. When the housing is compressed into contact with the sealant material, the circumferential and longitudinal sealing ribs can apply a uniform, controlled pressure about the optical fiber cable without puncturing or damaging the sealant material.

    TELECOMMUNICATIONS DISTRIBUTION ELEMENTS
    3.
    发明申请

    公开(公告)号:US20200003983A1

    公开(公告)日:2020-01-02

    申请号:US16263765

    申请日:2019-01-31

    Abstract: An optical fiber distribution element (1810) includes a chassis (1820), an optical device (1900) mounted to the chassis (1820), the optical device (1900) including a plurality of cables (2134) extending from the optical device (1900) into the chassis (1820), and a cable management device (2110/2210) mounted to the chassis (1820). The cable management device (2110/2210) includes a plurality of radius limiters in the form of spools (2132/2232) in a stacked arrangement for managing the cables (2134) extending from the optical device (1900) for further connection within the chassis (1820), wherein a first of the spools (2132/2232) defines a spool wall (2136/2236) having a different wall length than that of a second of the spools (2132/2232), wherein a first of the plurality of cables (2134) is routed around the first of the spools (2132/2232) and a second of the plurality of cables (2134) is routed around the second of the spools (2132/2232) that has a different spool wall length than that of the first of the spools (2132/2232).

    CAM LEVER ACTUATED CABLE SEALING DEVICE
    4.
    发明申请

    公开(公告)号:US20170152950A1

    公开(公告)日:2017-06-01

    申请号:US15369399

    申请日:2016-12-05

    Abstract: The present disclosure relates to a cable sealing device (30) for providing a seal around a communications cable (88, 90). The cable sealing device (30) includes a cable seal arrangement (38) positioned between first and second compression plates (92F, 92R). The cable sealing device (30) also includes an actuator (36) for compressing the first and second compression plates (92F, 92R) together to deform the cable sealing arrangement (38) such that the cable sealing arrangement (38) is adapted to form a seal about a cable (88, 90) routed through the cable sealing device (30). The actuator includes a cam lever (94) pivotally movable between an actuated position (P2) and a non-actuated position (P1). The actuator also includes a spring (98) for transferring load between the cam lever (94) and the first and second compression plates (92F, 92R). The spring (98) is pre-loaded when the cam lever (94) is in the non-actuated position (P1) (FIG. 13) with a pre-load equal to at least 50 percent of a total load applied through the spring (98) when the cam lever 94) is in the actuated position (P2).

    TELECOMMUNICATIONS DISTRIBUTION ELEMENTS
    6.
    发明公开

    公开(公告)号:US20230288656A1

    公开(公告)日:2023-09-14

    申请号:US18162556

    申请日:2023-01-31

    Abstract: An optical fiber distribution element (1810) includes a chassis (1820), an optical device (1900) mounted to the chassis (1820), the optical device (1900) including a plurality of cables (2134) extending from the optical device (1900) into the chassis (1820), and a cable management device (2110/2210) mounted to the chassis (1820). The cable management device (2110/2210) includes a plurality of radius limiters in the form of spools (2132/2232) in a stacked arrangement for managing the cables (2134) extending from the optical device (1900) for further connection within the chassis (1820), wherein a first of the spools (2132/2232) defines a spool wall (2136/2236) having a different wall length than that of a second of the spools (2132/2232), wherein a first of the plurality of cables (2134) is routed around the first of the spools (2132/2232) and a second of the plurality of cables (2134) is routed around the second of the spools (2132/2232) that has a different spool wall length than that of the first of the spools (2132/2232).

    TELECOMMUNICATIONS DISTRIBUTION ELEMENTS

    公开(公告)号:US20220252812A1

    公开(公告)日:2022-08-11

    申请号:US17730370

    申请日:2022-04-27

    Abstract: A fiber optic telecommunications device (2302/2402/2502) includes a first fiber optic connection location (2308) defined on the telecommunications device (2302/2402/2502), wherein a plurality of optical fibers (2307) extends into the telecommunications device (2302/2402/2502) from the first fiber optic connection location (2308). A plurality of second fiber optic connection locations (2309) are movably disposed on the telecommunications device (2302/2402/2502). A flexible substrate (2306/2506) is positioned between the first fiber optic connection location (2308) and the plurality of second fiber optic connection locations (2309), the flexible substrate (2306/2506) rigidly supporting the plurality of optical fibers (2307) and relaying the plurality of fibers (2307) from the first fiber optic connection location (2308) to each of the second fiber optic connection locations (2309).

    LIGHT WEIGHT FIBER OPTIC SPLICE AND FIBER MANAGEMENT SYSTEM

    公开(公告)号:US20210278594A1

    公开(公告)日:2021-09-09

    申请号:US16328474

    申请日:2017-08-24

    Abstract: The present disclosure relates to an optical splice package for splicing together first and second optical fibers or first and second sets of optical fibers. The optical fibers have elastic bending characteristics. The splice package includes a splice housing including a mechanical alignment feature for co-axially aligning ends of the first and second optical fibers or sets of optical fibers within the splice housing. The splice housing contains adhesive for securing the ends of the first and second optical fibers or sets of optical fibers within the splice housing. The optical package has a weight less than a spring force corresponding to the elastic bending characteristics of the first and second optical fibers or sets of optical fibers.

Patent Agency Ranking